Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Chen H, Chin KL, Tan CBY
    Data Brief, 2021 Feb;34:106662.
    PMID: 33376765 DOI: 10.1016/j.dib.2020.106662
    This article describes the process of selecting a collection of professional and amateur videos that elicit five basic emotions (i.e., happiness, fear, disgust, anger, and sadness) and validating these videos in three groups of participants (i.e., Chinese from China, Chinese from Malaysia, and Bumiputera from Malaysia). In the video selection phase, professional videos, which were Western movie trailers, were selected from IMDb (Internet Movie Database) and amateur videos were selected from YouTube. The researchers selected videos that display five basic emotions, identified the time frames with the strongest display of emotion, and rated the emotional intensity of each video on a 5-point Likert scale. After the initial stage of selection, two other researchers performed an emotion recognition task by watching the videos without audio to ensure that the emotions can be elicited without understanding the language. This data was used to refine the final selection of 20 professional videos and 20 amateur videos. In the video validation phase, 30 participants were asked to identify and rate the intensity of emotion felt. This article includes a description of the video selection method, a detailed list of the videos selected, and participants' responses and ratings of emotional intensity for the 40 videos.
  2. Chin KL, Sarmiento ME, Norazmi MN, Acosta A
    Tuberculosis (Edinb), 2018 12;113:139-152.
    PMID: 30514496 DOI: 10.1016/j.tube.2018.09.008
    Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (MTBC), is an infectious disease with more than 10.4 million cases and 1.7 million deaths reported worldwide in 2016. The classical methods for detection and differentiation of mycobacteria are: acid-fast microscopy (Ziehl-Neelsen staining), culture, and biochemical methods. However, the microbial phenotypic characterization is time-consuming and laborious. Thus, fast, easy, and sensitive nucleic acid amplification tests (NAATs) have been developed based on specific DNA markers, which are commercially available for TB diagnosis. Despite these developments, the disease remains uncontrollable. The identification and differentiation among MTBC members with the use of NAATs remains challenging due, among other factors, to the high degree of homology within the members and mutations, which hinders the identification of specific target sequences in the genome with potential impact in the diagnosis and treatment outcomes. In silico methods provide predictive identification of many new target genes/fragments/regions that can specifically be used to identify species/strains, which have not been fully explored. This review focused on DNA markers useful for MTBC detection, species identification and antibiotic resistance determination. The use of DNA targets with new technological approaches will help to develop NAATs applicable to all levels of the health system, mainly in low resource areas, which urgently need customized methods to their specific conditions.
  3. Chin KL, Anibarro L, Sarmiento ME, Acosta A
    Trop Med Infect Dis, 2023 Jan 28;8(2).
    PMID: 36828505 DOI: 10.3390/tropicalmed8020089
    Globally, it is estimated that one-quarter of the world's population is latently infected with Mycobacterium tuberculosis (Mtb), also known as latent tuberculosis infection (LTBI). Recently, this condition has been referred to as tuberculosis infection (TBI), considering the dynamic spectrum of the infection, as 5-10% of the latently infected population will develop active TB (ATB). The chances of TBI development increase due to close contact with index TB patients. The emergence of multidrug-resistant TB (MDR-TB) and the risk of development of latent MDR-TB has further complicated the situation. Detection of TBI is challenging as the infected individual does not present symptoms. Currently, there is no gold standard for TBI diagnosis, and the only screening tests are tuberculin skin test (TST) and interferon gamma release assays (IGRAs). However, these tests have several limitations, including the inability to differentiate between ATB and TBI, false-positive results in BCG-vaccinated individuals (only for TST), false-negative results in children, elderly, and immunocompromised patients, and the inability to predict the progression to ATB, among others. Thus, new host markers and Mtb-specific antigens are being tested to develop new diagnostic methods. Besides screening, TBI therapy is a key intervention for TB control. However, the long-course treatment and associated side effects result in non-adherence to the treatment. Additionally, the latent MDR strains are not susceptible to the current TBI treatments, which add an additional challenge. This review discusses the current situation of TBI, as well as the challenges and efforts involved in its control.
  4. Zhang GH, Chin KL, Yan SY, Pare R
    PLoS One, 2023;18(10):e0287817.
    PMID: 37788276 DOI: 10.1371/journal.pone.0287817
    Alzheimer's disease (AD) is a common amnestic cognitive impairment characterised by β-amyloid (Aβ) plaques deposit in the brain of the elderly. AD is a yet incurable disease due to its unknown exact pathogenesis and unavailability of effective remedies in clinical application. Thymosin β4 (Tβ4) is a housekeeping protein that plays important role in cell proliferation, migration and differentiation. It has the ability to protect and repair neurons however it is still unclear involvement in AD. Therefore, the aim of this study is to elucidate the role and mechanism of Tβ4 in mediating the improvement of AD. AD-like cell model was constructed in neuroblastoma cell line SH-SY5Y treated with Aβ. Overexpression of Tβ4 were done using lentivirus infection and downregulation through siRNA transfection. We performed western blot and flow cytometry to study the apoptosis and standard kits to measure the oxidative stress-associated biomarkers. There is significant increased in viability and decreased apoptosis in Tβ4 overexpression group compared to control. Furthermore, overexpression of Tβ4 suppressed the expression of pro-apoptotic markers such as Caspase-3, Caspase-8, and Bax meanwhile upregulated the expression of anti-apoptotic gene Bcl-2. Tβ4 alleviated oxidative damage by reducing MDA, LDH and ROS and increasing SOD and GSH-PX in Aβ-treated SH-SY5Y cells. We found that Tβ4 inhibit ERK/p38 MAPK pathway and intensify the expression of 5-HTR1A. Additionally, we showed that upregulation of 5-HTR1A dampened the Tβ4 to activate ERK signalling. In conclusion, our study revealed the neuroprotective role of Tβ4 in AD which may open up new therapeutic applications in AD treatment.
  5. Jumat MI, Sarmiento ME, Acosta A, Chin KL
    J Appl Microbiol, 2023 Jun 01;134(6).
    PMID: 37197901 DOI: 10.1093/jambio/lxad104
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains the leading cause of mortality due to infectious diseases, only surpassed in 2020 by COVID-19. Despite the development in diagnostics, therapeutics, and evaluation of new vaccines for TB, this infectious disease remains uncontrollable due to the emergence of multidrug-resistant (MDR) and extremely drug-resistant (XDR) TB, among other factors. The development in transcriptomics (RNomics) has enabled the study of gene expression in TB. It is considered that non-coding RNAs (ncRNAs) from host [microRNAs (miRNAs)] and Mtb [small RNAs (sRNAs)] are important elements in TB pathogenesis, immune resistance, and susceptibility. Many studies have shown the importance of host miRNAs in regulating immune response against Mtb via in vitro and in vivo mice models. The bacterial sRNAs play a major role in survival, adaptation, and virulence. Here, we review the characterization and function of host and bacteria ncRNAs in TB and their potential use in clinical applications as diagnostic, prognostic, and therapeutic biomarkers.
  6. Zhang GH, Pare RB, Chin KL, Qian YH
    Life Sci, 2021 Nov 25.
    PMID: 34838849 DOI: 10.1016/j.lfs.2021.120178
    AIMS: Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder seriously endangering the physical and mental health of the elderly, while no effective treatments and drugs in clinical practice are available. Thymosin β4 (Tβ4) is a multifunctional polypeptide involved in many physiological and pathological processes including AD. This study aims to understand the function and molecular mechanism of Tβ4 in the development of AD.

    MAIN METHODS: Neuroblastoma cell line SH-SY5Y was treated with β-amyloid (Aβ) to induce AD-like pathological changes, which serves as Alzheimer's disease model. Tβ4 was overexpressed in SH-SY5Y cells by lentivirus infection, and downregulated by siRNA transfection. Apoptosis of transfected SH-SY5Y cells after Aβ-treatment was examined by western blot and flow cytometry. Apoptotic proteins and Tβ4-related signaling pathways were also investigated by western blot.

    KEY FINDINGS: We found that Tβ4 overexpression increased viability and suppressed apoptosis of Aβ-treated SH-SY5Y cells. Tβ4 ameliorated oxidative damage and suppressed reactive oxygen species production in Aβ-treated SH-SY5Y cells. Consistently, Tβ4 overexpression down-regulated the expression levels of pro-apoptotic markers such as Caspase-3, Caspase-8, and Bax, while up-regulated the expression level of anti-apoptotic gene Bcl-2 in Aβ-stimulated SH-SY5Y cells. Mechanistically, we demonstrated that Tβ4 dampened ERK/p38 MAPK signaling and enhanced 5-HTR1A expression in Aβ-treated SH-SY5Y cells. Moreover, we revealed that Tβ4 inhibited the activation of ERK pathway through up-regulating 5-HTR1A in Aβ-treated SH-SY5Y cells.

    SIGNIFICANCE: Taken together, our findings provide evidences to support the neuroprotective role of Tβ4 and might open up new therapeutic applications of Tβ4 in AD treatment.

  7. Chang ZY, Alhamami FAMS, Chin KL
    PMID: 37554129 DOI: 10.1155/2023/9224815
    Coronavirus disease (COVID-19), a highly contagious and rapidly spreading disease with significant fatality in the elderly population, has swept across the world since 2019. Since its first appearance, the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has undergone multiple mutations, with Omicron as the predominant circulating variant of concern at the moment. The gold standard for diagnosis of COVID-19 by real-time polymerase chain reaction (RT-PCR) to detect the virus is laborious and requires well-trained personnel to perform sophisticated procedures. Also, the genetic variants of SARS-CoV-2 that arise regularly could result in false-negative detection. Meanwhile, the current COVID-19 treatments such as conventional medicine, complementary and alternative medicine, passive antibody therapy, and respiratory therapy are associated with adverse effects. Thus, there is an urgent need to discover novel diagnostic and therapeutic approaches against SARS-CoV-2 and its variants. Over the past 30 years, nucleic acid-based aptamers have gained increasing attention and serve as a promising alternative to the antibodies in the diagnostic and therapeutic fields with their uniqueness of being small, nonimmunogenicity, and thermally stable. Aptamer targeting the SARS-CoV-2 structural proteins or the host receptor proteins represent a powerful tool to control COVID-19 infection. In this review, challenges faced by currently available diagnostic and therapeutic tools for COVID-19 are underscored, along with how aptamers can shed a light on the current COVID-19 pandemic, focusing on the critical factors affecting the discovery of high-affinity aptamers and their potential applications to control COVID-19 infection.
  8. Chin KL, H'ng PS, Wong LJ, Tey BT, Paridah MT
    Bioresour Technol, 2010 May;101(9):3287-91.
    PMID: 20056407 DOI: 10.1016/j.biortech.2009.12.036
    Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3.
  9. Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, et al.
    Tuberculosis (Edinb), 2019 03;115:26-41.
    PMID: 30948174 DOI: 10.1016/j.tube.2019.01.003
    Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.
  10. Lee NT, Ahmedy F, Mohamad Hashim N, Yin KN, Chin KL
    Behav Neurol, 2021;2021:8887012.
    PMID: 34367374 DOI: 10.1155/2021/8887012
    Stroke is one of the most deliberating causes of mortality and disability worldwide. Studies have implicated Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene as a genetic factor influencing stroke recovery. Still, the role of BDNF polymorphism in poststroke aphasia is relatively unclear. This review assesses the recent evidence on the association between the BDNF polymorphism and aphasia recovery in poststroke patients. The article highlights BNDF polymorphism characteristics, speech and language interventions delivered, and the influence of BNDF polymorphism on poststroke aphasia recovery. We conducted a literature search through PubMed and Google Scholar with the following terms: "brain derived-neurotrophic factor" and "aphasia" for original articles from January 2000 until June 2020. Out of 69 search results, a detailed selection process produced a total of 3 articles that met the eligibility criteria. All three studies included Val66Met polymorphism as the studied human BDNF gene. One of the studies demonstrated insufficient evidence to conclude that BDNF polymorphism plays a role in poststroke aphasia recovery. The remaining two studies have shown that Met allele genotype (either single or double nucleotides) was associated with poor aphasia recovery, in either acute or chronic stroke. Carriers of the Val66Met polymorphism of BDNF gave a poorer response to aphasia intervention and presented with more severe aphasia.
  11. Tan QY, Zomer E, Owen AJ, Chin KL, Liew D
    Tob Control, 2020 01;29(1):111-117.
    PMID: 30610080 DOI: 10.1136/tobaccocontrol-2018-054677
    BACKGROUND: The loss of productivity arising from tobacco use in low/middle-income countries has not been well described. We sought to examine the impact of cigarette smoking on population health and work productivity in Malaysia using a recently published measure, the productivity-adjusted life year (PALY).

    METHODS: A life table model was constructed using published Malaysian demographic and mortality data. Our analysis was limited to male smokers due to the low smoking prevalence in females (1.1%). Male smokers aged 15-64 years were followed up until 65 years or until death. The population attributable risk, health-related quality of life decrements and relative reduction in productivity due to smoking were sourced from published data. The analysis was repeated assuming the cohorts were never smokers, and the differences in outcomes represented the health and productivity burden conferred by smoking. The cost of productivity loss was estimated based on the gross domestic product per equivalent full-time worker in Malaysia.

    RESULTS: Tobacco use is highly prevalent among working-age males in Malaysia, with 4.2 million (37.5%) daily smokers among men aged between 15 and 64 years. Overall, our model estimated that smoking resulted in the loss of over 2.1 million life years (2.9%), 5.5 million (8.2%) quality-adjusted life years (QALYs) and 3.0 million (4.8%) PALYs. Smoking was estimated to incur RM275.3 billion (US$69.4 billion) in loss of productivity.

    CONCLUSION: Tobacco use imposes a significant public health and economic burden among working-age males in Malaysia. This study highlights the need of effective public health interventions to reduce tobacco use.

  12. Sarmiento ME, Chin KL, Lau NS, Aziah I, Norazmi MN, Acosta A, et al.
    Mitochondrial DNA B Resour, 2021 May 23;6(6):1710-1714.
    PMID: 34104748 DOI: 10.1080/23802359.2021.1930213
    This paper reports on the complete mitochondrial (mt) genome of a horseshoe crab, Tachypleus gigas (T. gigas), in Kuala Kemaman, Terengganu, Malaysia. Whole-genome sequencing of hemocyte DNA was performed with Illumina HiSeq system and the generated reads were de novo assembled with ABySS 2.1.5 and reassembled using mitoZ against Carcinoscorpius rotundicauda and Limulus polyphemus, resulting in a contig of 15 Kb. Phylogenetic analysis of the assembled mt genome suggests that the Tachypleus gigas is closely related to Tachypleus tridentatus than to Carcinoscorpius rotundicauda.
  13. Chin KL, Sarmiento ME, Mustapha ZA, Jani J, Jamal NB, Stanis CS, et al.
    Tuberculosis (Edinb), 2020 12;125:102003.
    PMID: 33099253 DOI: 10.1016/j.tube.2020.102003
    Tuberculosis (TB) is the deadliest of infectious diseases. TB diagnosis, based on sputum microscopy, culture, and nucleic acid amplification tests (NAATs) to identify its main causative agent, Mycobacterium tuberculosis (MTB), remains challenging. The current available NAATs, endorsed by World Health Organization (WHO), can differentiate MTB from some MTB complex (MTBC) members. Using bioinformatics, we identified a single nucleotide polymorphism (SNP) in lprM (Rv1970) gene that differentiate MTB from other MTBC members. A forward mismatch amplification mutation assay (MAMA) primer was designed for the targeted mutation and was used in a semi-nested melt-MAMA qPCR (lprM-MAMA). Using the optimized protocol, lprM-MAMA was positive with all MTB reference and clinical strains, and negative with other MTBC members, non-tuberculous mycobacteria (NTM) and other non-mycobacterial (NM) reference strains. The limit of detection (LOD) of lprM-MAMA was 76.29 fg. Xpert® MTB/RIF (Xpert)-positive sputum samples were also positive by lprM-MAMA, except for samples classified as having "very low" bacterial load by Xpert. Xpert-negative sputum samples were also negative by lprM-MAMA. In conclusion, lprM-MAMA demonstrated to be a useful tool for specific MTB diagnosis. Further evaluation with higher number of reference strains, including NTM and NM; and sputum samples are required to determine its potential for clinical application.
  14. Sarmiento ME, Chin KL, Lau NS, Aziah I, Ismail N, Norazmi MN, et al.
    Fish Shellfish Immunol, 2021 Oct;117:148-156.
    PMID: 34358702 DOI: 10.1016/j.fsi.2021.08.001
    Horseshoe crabs (HSCs) are living fossil species of marine arthropods with a long evolutionary history spanning approximately 500 million years. Their survival is helped by their innate immune system that comprises cellular and humoral immune components to protect them against invading pathogens. To help understand the genetic mechanisms involved, the present study utilised the Illumina HiSeq platform to perform transcriptomic analysis of hemocytes from the HSC, Tachypleus gigas, that were challenged with lipopolysaccharides (LPS). The high-throughput sequencing resulted in 352,077,208 and 386,749,136 raw reads corresponding to 282,490,910 and 305,709,830 high-quality mappable reads for the control and LPS-treated hemocyte samples, respectively. Based on the log-fold change of > 0.3 or 
  15. Chin KL, Redhuan NE, Balaram P, Phua KK, Ong EB
    J Clin Diagn Res, 2016 Jun;10(6):DM01-3.
    PMID: 27504289 DOI: 10.7860/JCDR/2016/17801.7909
    The Salmonella typhi (S. typhi) haemolysin E protein (HlyE) has been shown to be a sensitive and specific antigen for the detection of typhoid fever through the detection of anti-HlyE antibodies in sera. Saliva can also be a useful diagnostic fluid as it also contains antibodies against bacterial pathogens.
  16. Chin KL, Sarmiento ME, Alvarez-Cabrera N, Norazmi MN, Acosta A
    Eur J Clin Microbiol Infect Dis, 2020 May;39(5):799-826.
    PMID: 31853742 DOI: 10.1007/s10096-019-03771-0
    Currently, there is a trend of increasing incidence in pulmonary non-tuberculous mycobacterial infections (PNTM) together with a decrease in tuberculosis (TB) incidence, particularly in developed countries. The prevalence of PNTM in underdeveloped and developing countries remains unclear as there is still a lack of detection methods that could clearly diagnose PNTM applicable in these low-resource settings. Since non-tuberculous mycobacteria (NTM) are environmental pathogens, the vicinity favouring host-pathogen interactions is known as important predisposing factor for PNTM. The ongoing changes in world population, as well as socio-political and economic factors, are linked to the rise in the incidence of PNTM. Development is an important factor for the improvement of population well-being, but it has also been linked, in general, to detrimental environmental consequences, including the rise of emergent (usually neglected) infectious diseases, such as PNTM. The rise of neglected PNTM infections requires the expansion of the current efforts on the development of diagnostics, therapies and vaccines for mycobacterial diseases, which at present, are mainly focused on TB. This review discuss the current situation of PNTM and its predisposing factors, as well as the efforts and challenges for their control.
  17. Chin KL, Zainal N, Sam SS, Hassandarvish P, Lani R, AbuBakar S
    Sci Rep, 2022 01 20;12(1):1054.
    PMID: 35058496 DOI: 10.1038/s41598-022-04955-z
    Neonatal microcephaly and adult Guillain-Barré syndrome are severe complications of Zika virus (ZIKV) infection. The robustly induced inflammatory cytokine expressions in ZIKV-infected patients may constitute a hallmark for severe disease. In the present study, the potential role of high mobility group box 1 protein (HMGB1) in ZIKV infection was investigated. HMGB1 protein expression was determined by the enzyme-linked immunosorbent assay (ELISA) and immunoblot assay. HMGB1's role in ZIKV infection was also explored using treatment with dexamethasone, an immunomodulatory drug, and HMGB1-knockdown (shHMGB1) Huh7 cells. Results showed that the Huh7 cells were highly susceptible to ZIKV infection. The infection was found to induce HMGB1 nuclear-to-cytoplasmic translocation, resulting in a > 99% increase in the cytosolic HMGB1 expression at 72-h post-infection (h.p.i). The extracellular HMGB1 level was elevated in a time- and multiplicity of infection (MOI)-dependent manner. Treatment of the ZIKV-infected cells with dexamethasone (150 µM) reduced HMGB1 extracellular release in a dose-dependent manner, with a maximum reduction of 71 ± 5.84% (P 
  18. Hafizuddin MS, Lee CL, Chin KL, H'ng PS, Khoo PS, Rashid U
    Polymers (Basel), 2021 Nov 16;13(22).
    PMID: 34833252 DOI: 10.3390/polym13223954
    The aim of this study was to select the optimal conditions for the carbonization process followed by surface modification treatment with sodium hydroxide (NaOH) to obtain a highly microporous activated carbon structure derived from palm kernel shells (PKS) and coconut shells (CS). The effects of the carbonization temperature and NaOH concentration on the physiochemical properties, adsorption capability, specific surface area, surface morphology, and surface chemistry of PKS and CS were evaluated in this study. The results show that surface-modified activated carbons presented higher surface area values (CS: 356.87 m2 g-1, PKS: 427.64 m2 g-1), smaller pore size (CS: 2.24 nm, PKS: 1.99 nm), and larger pore volume (CS: 0.34 cm3 g-1, PKS: 0.30 cm3 g-1) than the untreated activated carbon, demonstrating that the NaOH surface modification was efficient enough to improve the surface characteristics of the activated carbon. Moreover, surface modification via 25% NaOH greatly increases the active functional group of activated carbon, thereby directly increasing the adsorption capability of activated carbon (CS: 527.44 mg g-1, PKS: 627.03 mg g-1). By applying the NaOH post-treatment as the ultimate surface modification technique to the activated carbon derived from PKS and CS, a highly microporous structure was produced.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links