METHODS: AYHIV in Malaysia, Thailand, and Vietnam were prospectively followed through annual clinical assessments and laboratory testing. Data were described descriptively and a generalized estimating equation was used to calculate independent predictors for HIV viremia (>40 copies/mL).
RESULTS: A total of 93 AYHIV were followed until February 2019: 60% female, 94% acquired HIV perinatally, 81% Thai, median age 20 (interquartile range, 18-21) years. The median follow-up time was 94 (91-100) weeks; 88% completed the study. At week 96, median CD4 was 557 cells/mm3 (interquartile range, 337-786), 77% had suppressed HIV viral load, 39% reported recent alcohol use, 49% had been sexually active, 53% of females and 36% of males intended to have children, and 23% screened positive for moderate depression (Patient Health Questionnaire-9 score ≥9) or reported suicidal ideation. HIV viremia was associated with <90% adherence to HIV treatment (adjusted incidence rate ratio [aIRR] 2.2 [1.28-3.78]), CD4 count ≤500 cells/mm3 (aIRR 4.75 [2.11-10.69]), and being on a nonnucleoside reverse transcriptase inhibitor regimen (vs. protease inhibitor aIRR 2.71 [1.13-6.49]). Having a trusted person to talk with about their feelings was protective (vs. never; usually or always, aIRR 0.41 [0.18-0.92]).
DISCUSSION: After transition to adult HIV care, there were indications of social isolation and mental health problems that could prevent these AYHIV from maintaining control over their HIV infection and hinder progress toward social independence.
METHODS: AYHIV who transferred from a pediatric to an adult clinic within the past year across five sites in Malaysia, Thailand, and Vietnam had clinical and laboratory evaluations and completed questionnaires about their health, socioeconomic factors, and transition experiences. Multiple logistic regression was used to assess associations with HIV viremia.
RESULTS: Of 93 AYHIV enrolled between June 2016 and April 2017, 56% were female, 87% acquired HIV through perinatal exposure, median age was 20 years (interquartile range [IQR] 18.5-21). Two-thirds were in a formal education program, 43% were employed, 43% of females and 35% of males were sexually active. Median lifetime antiretroviral therapy duration was 6.2 years (IQR 3.3-10.7); 45% had received second-line therapy. Median CD4 was 601 cells/mm3 (IQR 477-800); 82% had HIV-RNA <40 copies/mL. Being in a relationship, a shorter posttransition duration, self-reported adherence of ≥95%, and higher CD4 were inversely associated with HIV viremia. Half felt very prepared for the transfer to adult care, and 20% frequently and 43% sometimes still met with pediatric providers. Two-thirds reported needing to keep their HIV a secret, and 23%-38% reported never or rarely having someone to discuss problems with.
CONCLUSIONS: Asian AYHIV in our cohort were concerned about the negative social impact of having and disclosing HIV, and one-third lacked people they could trust with their personal problems, which could have negative implications for their ability to navigate adult life.
METHODS: A prospective cohort study among ALHIV and matched HIV-uninfected controls aged 12-18 years was conducted at 9 sites in Malaysia, Thailand, and Vietnam from July 2013 to March 2017. Participants completed an audio computer-assisted self-interview at weeks 0, 48, 96, and 144. Virologic failure (VF) was defined as ≥1 viral load (VL) measurement >1000 copies/mL. Generalized estimating equations were used to identify predictors for VF.
RESULTS: Of 250 ALHIV and 59 HIV-uninfected controls, 58% were Thai and 51% females. The median age was 14 years at enrollment; 93% of ALHIV were perinatally infected. At week 144, 66% of ALHIV were orphans vs. 28% of controls (P < 0.01); similar proportions of ALHIV and controls drank alcohol (58% vs. 65%), used inhalants (1% vs. 2%), had been sexually active (31% vs. 21%), and consistently used condoms (42% vs. 44%). Of the 73% of ALHIV with week 144 VL testing, median log VL was 1.60 (interquartile range 1.30-1.70) and 19% had VF. Over 70% of ALHIV had not disclosed their HIV status. Self-reported adherence ≥95% was 60% at week 144. Smoking cigarettes, >1 sexual partner, and living with nonparent relatives, a partner or alone, were associated with VF at any time.
CONCLUSIONS: The subset of ALHIV with poorer adherence and VF require comprehensive interventions that address sexual risk, substance use, and HIV-status disclosure.
METHODS: We used Cox regression to analyze data of a cohort of Asian children.
RESULTS: A total of 2608 children were included; median age at cART was 5.7 years. Time-updated weight for age z score < -3 was associated with mortality (P < 0.001) independent of CD4% and < -2 was associated with immunological failure (P ≤ 0.03) independent of age at cART.
CONCLUSIONS: Weight monitoring provides useful data to inform clinical management of children on cART in resource-limited settings.
Methods: Study end points were as follows: (1) a CD4 count <200 cells/mm3 followed by a CD4 count ≥200 cells/mm3 (transient CD4 <200); (2) CD4 count <200 cells/mm3 confirmed within 6 months (confirmed CD4 <200); and (3) a new or recurrent World Health Organization (WHO) stage 3 or 4 illness (clinical failure). Kaplan-Meier curves and Cox regression were used to evaluate rates and predictors of transient CD4 <200, confirmed CD4 <200, and clinical failure among virally suppressed children aged 5-15 years who were enrolled in the TREAT Asia Pediatric HIV Observational Database.
Results: Data from 967 children were included in the analysis. At the time of confirmed viral suppression, median age was 10.2 years, 50.4% of children were female, and 95.4% were perinatally infected with HIV. Median CD4 cell count was 837 cells/mm3, and 54.8% of children were classified as having WHO stage 3 or 4 disease. In total, 18 transient CD4 <200 events, 2 confirmed CD4 <200 events, and10 clinical failures occurred at rates of 0.73 (95% confidence interval [95% CI], 0.46-1.16), 0.08 (95% CI, 0.02-0.32), and 0.40 (95% CI, 0.22-0.75) events per 100 patient-years, respectively. CD4 <500 cells/mm3 at the time of viral suppression confirmation was associated with higher rates of both CD4 outcomes.
Conclusions: Regular CD4 testing may be unnecessary for virally suppressed children aged 5-15 years with CD4 ≥500 cells/mm3.
METHODS: Children enrolled in the TREAT Asia Pediatric HIV Observational Database who had SM (weight-for-height or body mass index-for-age Z score less than -3) at ART initiation were analyzed. Generalized estimating equations were used to investigate poor weight recovery (weight-for-age Z score less than -3) and poor CD4% recovery (CD4% <25), and competing risk regression was used to analyze mortality and toxicity-associated treatment modification.
RESULTS: Three hundred fifty-five (11.9%) of 2993 children starting ART had SM. Their median weight-for-age Z score increased from -5.6 at ART initiation to -2.3 after 36 months. Not using trimethoprim-sulfamethoxazole prophylaxis at baseline was associated with poor weight recovery [odds ratio: 2.49 vs. using; 95% confidence interval (CI): 1.66-3.74; P < 0.001]. Median CD4% increased from 3.0 at ART initiation to 27.2 after 36 months, and 56 (15.3%) children died during follow-up. More profound SM was associated with poor CD4% recovery (odds ratio: 1.78 for Z score less than -4.5 vs. -3.5 to less than -3.0; 95% CI: 1.08-2.92; P = 0.023) and mortality (hazard ratio: 2.57 for Z score less than -4.5 vs. -3.5 to less than -3.0; 95% CI: 1.24-5.33; P = 0.011). Twenty-two toxicity-associated ART modifications occurred at a rate of 2.4 per 100 patient-years, and rates did not differ by malnutrition severity.
CONCLUSION: Trimethoprim-sulfamethoxazole prophylaxis is important for the recovery of weight-for-age in severely malnourished children starting ART. The extent of SM does not impede weight-for-age recovery or antiretroviral tolerability, but CD4% response is compromised in children with a very low weight-for-height/body mass index-for-age Z score, which may contribute to their high rate of mortality.
METHODS: Data collected 2001 to 2016 from PHIVA 10-19 years of age within a regional Asian cohort were analyzed using competing risk time-to-event and Poisson regression analyses to describe the nature and incidence of morbidity events and hospitalizations and identify factors associated with disease-related, treatment-related and overall morbidity. Morbidity was defined according to World Health Organization clinical staging criteria and U.S. National Institutes of Health Division of AIDS criteria.
RESULTS: A total 3,448 PHIVA contributed 17,778 person-years. Median age at HIV diagnosis was 5.5 years, and ART initiation was 6.9 years. There were 2,562 morbidity events and 307 hospitalizations. Cumulative incidence for any morbidity was 51.7%, and hospitalization was 10.0%. Early adolescence was dominated by disease-related infectious morbidity, with a trend toward noninfectious and treatment-related morbidity in later adolescence. Higher overall morbidity rates were associated with a CD4 count <350 cells/µL, HIV viral load ≥10,000 copies/mL and experiencing prior morbidity at age <10 years. Lower overall morbidity rates were found for those 15-19 years of age compared with 10-14 years and those who initiated ART at age 5-9 years compared with <5 or ≥10 years.
CONCLUSIONS: Half of our PHIVA cohort experienced a morbidity event, with a trend from disease-related infectious events to treatment-related and noninfectious events as PHIVA age. ART initiation to prevent immune system damage, optimize virologic control and minimize childhood morbidity are key to limiting adolescent morbidity.
METHODS: Perinatally HIV-infected Asian adolescents (10-19 years) with documented virologic suppression (two consecutive viral loads [VLs] <400 copies/mL ≥6 months apart) were included. Baseline was the date of the first VL <400 copies/mL at age ≥10 years or the 10th birthday for those with prior suppression. Cox proportional hazards models were used to identify predictors of postsuppression VR (VL >1,000 copies/mL).
RESULTS: Of 1,379 eligible adolescents, 47% were males. At baseline, 22% were receiving protease inhibitor-containing regimens; median CD4 cell count (interquartile range [IQR]) was 685 (448-937) cells/mm3; 2% had preadolescent virologic failure (VF) before subsequent suppression. During adolescence, 180 individuals (13%) experienced postsuppression VR at a rate of 3.4 (95% confidence interval: 2.9-3.9) per 100 person-years, which was consistent over time. Median time to VR during adolescence (IQR) was 3.3 (2.1-4.8) years. Wasting (weight-for-age z-score
DESIGN: Ongoing observational database collating clinical data on HIV-infected children and adolescents in Asia.
METHODS: Data from 2001 to 2016 relating to adolescents (10-19 years) with perinatal HIV infection were analysed to describe characteristics at adolescent entry and transition and combination antiretroviral therapy (cART) regimens across adolescence. A competing risk regression analysis was used to determine characteristics at adolescent entry associated with mortality. Outcomes at transition were compared on the basis of age at cART initiation.
RESULTS: Of 3448 PHIVA, 644 had reached transition. Median age at HIV diagnosis was 5.5 years, cART initiation 7.2 years and transition 17.9 years. At adolescent entry, 35.0% had CD4+ cell count less than 500 cells/μl and 51.1% had experienced a WHO stage III/IV clinical event. At transition, 38.9% had CD4+ cell count less than 500 copies/ml, and 53.4% had experienced a WHO stage III/IV clinical event. Mortality rate was 0.71 per 100 person-years, with HIV RNA ≥1000 copies/ml, CD4+ cell count less than 500 cells/μl, height-for-age or weight-for-age z-score less than -2, history of a WHO stage III/IV clinical event or hospitalization and at least second cART associated with mortality. For transitioning PHIVA, those who commenced cART age less than 5 years had better virologic and immunologic outcomes, though were more likely to be on at least second cART.
CONCLUSION: Delayed HIV diagnosis and cART initiation resulted in considerable morbidity and poor immune status by adolescent entry. Durable first-line cART regimens to optimize disease control are key to minimizing mortality. Early cART initiation provides the best virologic and immunologic outcomes at transition.
METHODS: Data (2014-2018) from a regional cohort of Asian PHIVA who received at least 6 months of continuous cART were analyzed. Treatment failure was defined according to World Health Organization criteria. Descriptive analyses were used to report treatment failure and subsequent management and evaluate postfailure CD4 count and viral load trends. Kaplan-Meier survival analyses were used to compare the cumulative incidence of death and loss to follow-up (LTFU) by treatment failure status.
RESULTS: A total 3196 PHIVA were included in the analysis with a median follow-up period of 3.0 years, of whom 230 (7.2%) had experienced 292 treatment failure events (161 virologic, 128 immunologic, 11 clinical) at a rate of 3.78 per 100 person-years. Of the 292 treatment failure events, 31 (10.6%) had a subsequent cART switch within 6 months, which resulted in better immunologic and virologic outcomes compared to those who did not switch cART. The 5-year cumulative incidence of death and LTFU following treatment failure was 18.5% compared to 10.1% without treatment failure.
CONCLUSIONS: Improved implementation of virologic monitoring is required to realize the benefits of virologic determination of cART failure. There is a need to address issues related to accessibility to subsequent cART regimens, poor adherence limiting scope to switch regimens, and the role of antiretroviral resistance testing.
METHODS: A multisite cross-sectional study was conducted in HIV-infected patients currently <25 years old receiving antiretroviral treatment (ART) who had HBV surface antigen (HBsAg), or HBV surface antibody (anti-HBs) or HBV core antibody (anti-HBc) tested during 2012-2013. HBV coinfection was defined as having either a positive HBsAg test or being anti-HBc positive and anti-HBs negative, reflective of past HBV infection. HBV seroprotection was defined as having a positive anti-HBs test.
RESULTS: A total of 3380 patients from 6 countries (Vietnam, Thailand, Cambodia, Malaysia, Indonesia and India) were included. The current median (interquartile range) age was 11.2 (7.8-15.1) years. Of the 2755 patients (81.5%) with HBsAg testing, 130 (4.7%) were positive. Of 1558 (46%) with anti-HBc testing, 77 (4.9%) were positive. Thirteen of 1037 patients with all 3 tests were anti-HBc positive and HBsAg and anti-HBs negative. One child was positive for anti-HBc and negative for anti-HBs but did not have HBsAg tested. The prevalence of HBV coinfection was 144/2759 (5.2%) (95% confidence interval: 4.4-6.1). Of 1093 patients (32%) with anti-HBs testing, 257 (23.5%; confidence interval: 21.0-26.0) had positive tests representing HBV seroprotection.
CONCLUSIONS: The estimated prevalence of HBV coinfection in this cohort of Asian HIV-infected children and adolescents on ART was 5.2%. The majority of children and adolescents tested in this cohort (76.5%) did not have protective HBV antibody. The finding supports HBV screening of HIV-infected children and adolescents to guide revaccination, the use of ART with anti-HBV activity and future monitoring.
METHODS: Data on children with perinatally acquired HIV aged <18 years on first-line, non-nucleoside reverse transcriptase inhibitor-based cART with viral suppression (two consecutive pVL <400 copies/mL over a six-month period) were included from a regional cohort study; those exposed to prior mono- or dual antiretroviral treatment were excluded. Frequency of pVL monitoring was determined at the site-level based on the median rate of pVL measurement: annual 0.75 to 1.5, and semi-annual >1.5 tests/patient/year. Treatment failure was defined as virologic failure (two consecutive pVL >1000 copies/mL), change of antiretroviral drug class, or death. Baseline was the date of the second consecutive pVL <400 copies/mL. Competing risk regression models were used to identify predictors of treatment failure.
RESULTS: During January 2008 to March 2015, there were 1220 eligible children from 10 sites that performed at least annual pVL monitoring, 1042 (85%) and 178 (15%) were from sites performing annual (n = 6) and semi-annual pVL monitoring (n = 4) respectively. Pre-cART, 675 children (55%) had World Health Organization clinical stage 3 or 4, the median nadir CD4 percentage was 9%, and the median pVL was 5.2 log10 copies/mL. At baseline, the median age was 9.2 years, 64% were on nevirapine-based regimens, the median cART duration was 1.6 years, and the median CD4 percentage was 26%. Over the follow-up period, 258 (25%) CLWH with annual and 40 (23%) with semi-annual pVL monitoring developed treatment failure, corresponding to incidence rates of 5.4 (95% CI: 4.8 to 6.1) and 4.3 (95% CI: 3.1 to 5.8) per 100 patient-years of follow-up respectively (p = 0.27). In multivariable analyses, the frequency of pVL monitoring was not associated with treatment failure (adjusted hazard ratio: 1.12; 95% CI: 0.80 to 1.59).
CONCLUSIONS: Annual compared to semi-annual pVL monitoring was not associated with an increased risk of treatment failure in our cohort of virally suppressed children with perinatally acquired HIV on first-line NNRTI-based cART.
SETTING: An Asian cohort in 16 pediatric HIV services across 6 countries.
METHODS: From 2005 to 2014, patients younger than 20 years who achieved virologic suppression and had subsequent viral load testing were included. Early virologic failure was defined as a HIV RNA ≥1000 copies per milliliter within 12 months of virologic suppression, and late virologic as a HIV RNA ≥1000 copies per milliliter after 12 months following virologic suppression. Characteristics at combination antiretroviral therapy initiation and virologic suppression were described, and a competing risk time-to-event analysis was used to determine cumulative incidence of virologic failure and factors at virologic suppression associated with early and late virologic failure.
RESULTS: Of 1105 included in the analysis, 182 (17.9%) experienced virologic failure. The median age at virologic suppression was 6.9 years, and the median time to virologic failure was 24.6 months after virologic suppression. The incidence rate for a first virologic failure event was 3.3 per 100 person-years. Factors at virologic suppression associated with late virologic failure included older age, mostly rural clinic setting, tuberculosis, protease inhibitor-based regimens, and early virologic failure. No risk factors were identified for early virologic failure.
CONCLUSIONS: Around 1 in 5 experienced virologic failure in our cohort after achieving virologic suppression. Targeted interventions to manage complex treatment scenarios, including adolescents, tuberculosis coinfection, and those with poor virologic control are required.