Displaying all 19 publications

Abstract:
Sort:
  1. Chong CK, Senan P, Kumar GV
    Med J Malaysia, 1997 Jun;52(2):169-71.
    PMID: 10968076
    Two cases of carbon monoxide poisoning involving 3 victims occurred in Cameron Highlands in the months of August and September 1995. Two of the victims were found dead in the bathrooms where they were taking a bath while the other one survived. Blood toxicology from the post mortems revealed high levels of carbon monoxide. The only significant source of carbon monoxide in both cases were the gas water heaters which were installed in the bathrooms. A multigas detector was used to monitor the level of carbon monoxide in one of the bathrooms and carbon monoxide was found to be produced to 1200 ppm in 16 minutes during operation of the heater. Carbon monoxide poisoning from gas water heaters installed in bathroom is a significant hazard.
  2. Lee J, Kim YE, Kim HY, Sinniah M, Chong CK, Song HO
    Sci Rep, 2015;5:18077.
    PMID: 26655854 DOI: 10.1038/srep18077
    High levels of anti-dengue IgM or IgG can be detected using numerous rapid diagnostic tests (RDTs). However, the sensitivity and specificity of these tests are reduced by changes in envelope glycoprotein antigenicity that inevitably occur in limited expression systems. A novel RDT was designed to enhance diagnostic sensitivity. Dengue viruses cultured in animal cells were used as antigens to retain the native viral coat protein. Monoclonal antibodies (mAbs) were then developed, for the first time, against domain I of envelope glycoprotein (EDI). The anti-dengue EDI mAb was employed as a capturer, and EDII and EDIII, which are mainly involved in the induction of neutralizing antibodies in patients, were fully available to bind to anti-dengue IgM or IgG in patients. A one-way automatic blood separation device prevented reverse migration of plasma and maximize the capture of anti-dengue antibodies at the test lines. A clinical evaluation in the field proved that the novel RDT (sensitivities of 96.5% and 96.7% for anti-dengue IgM and IgG) is more effective in detecting anti-dengue antibodies than two major commercial tests (sensitivities of 54.8% and 82% for SD BIOLINE; 50.4% and 75.3% for PanBio). The innovative format of RDT can be applied to other infectious viral diseases.
  3. Kim JH, Chong CK, Sinniah M, Sinnadurai J, Song HO, Park H
    J Clin Virol, 2015 Apr;65:11-9.
    PMID: 25766980 DOI: 10.1016/j.jcv.2015.01.018
    BACKGROUND: Dengue is a mosquito-borne disease that causes a public health problem in tropical and subtropical countries. Current immunological diagnostics based on IgM and/or nonstructural protein 1 (NS1) antigen are limited for acute dengue infection due to low sensitivity and accuracy.
    OBJECTIVES: This study aimed to develop a one-step multiplex real-time RT-PCR assay showing higher sensitivity and accuracy than previous approaches.
    STUDY DESIGN: Serotype-specific primers and probes were designed through the multiple alignment of NS1 gene. The linearity and limit of detection (LOD) of the assay were determined. The assay was clinically validated with an evaluation panel that was immunologically tested by WHO and Malaysian specimens.
    RESULTS: The LOD of the assay was 3.0 log10 RNA copies for DENV-1, 2.0 for DENV-3, and 1.0 for DENV-2 and DENV-4. The assay showed 95.2% sensitivity (20/21) in an evaluation panel, whereas NS1 antigen- and anti-dengue IgM-based immunological assays exhibited 0% and 23.8-47.6% sensitivities, respectively. The assay showed 100% sensitivity both in NS1 antigen- and anti-dengue IgM-positive Malaysian specimens (26/26). The assay provided the information of viral loads and serotype with discrimination of heterotypic mixed infection.
    CONCLUSIONS: The assay could be clinically applied to early dengue diagnosis, especially during the first 5 days of illness and approximately 14 days after infection showing an anti-dengue IgM-positive response.
  4. Chong SK, Mohamad MS, Mohamed Salleh AH, Choon YW, Chong CK, Deris S
    Comput Biol Med, 2014 Jun;49:74-82.
    PMID: 24763079 DOI: 10.1016/j.compbiomed.2014.03.011
    This paper presents a study on gene knockout strategies to identify candidate genes to be knocked out for improving the production of succinic acid in Escherichia coli. Succinic acid is widely used as a precursor for many chemicals, for example production of antibiotics, therapeutic proteins and food. However, the chemical syntheses of succinic acid using the traditional methods usually result in the production that is far below their theoretical maximums. In silico gene knockout strategies are commonly implemented to delete the gene in E. coli to overcome this problem. In this paper, a hybrid of Ant Colony Optimization (ACO) and Minimization of Metabolic Adjustment (MoMA) is proposed to identify gene knockout strategies to improve the production of succinic acid in E. coli. As a result, the hybrid algorithm generated a list of knockout genes, succinic acid production rate and growth rate for E. coli after gene knockout. The results of the hybrid algorithm were compared with the previous methods, OptKnock and MOMAKnock. It was found that the hybrid algorithm performed better than OptKnock and MOMAKnock in terms of the production rate. The information from the results produced from the hybrid algorithm can be used in wet laboratory experiments to increase the production of succinic acid in E. coli.
  5. Choon YW, Mohamad MS, Deris S, Illias RM, Chong CK, Chai LE
    Bioprocess Biosyst Eng, 2014 Mar;37(3):521-32.
    PMID: 23892659 DOI: 10.1007/s00449-013-1019-y
    Microbial strain optimization focuses on improving technological properties of the strain of microorganisms. However, the complexities of the metabolic networks, which lead to data ambiguity, often cause genetic modification on the desirable phenotypes difficult to predict. Furthermore, vast number of reactions in cellular metabolism lead to the combinatorial problem in obtaining optimal gene deletion strategy. Consequently, the computation time increases exponentially with the increase in the size of the problem. Hence, we propose an extension of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by integrating OptKnock into BAFBA to validate the result. This paper presents a number of computational experiments to test on the performance and capability of BAFBA. Escherichia coli, Bacillus subtilis and Clostridium thermocellum are the model organisms in this paper. Also included is the identification of potential reactions to improve the production of succinic acid, lactic acid and ethanol, plus the discussion on the changes in the flux distribution of the predicted mutants. BAFBA shows potential in suggesting the non-intuitive gene knockout strategies and a low variability among the several runs. The results show that BAFBA is suitable, reliable and applicable in predicting optimal gene knockout strategy.
  6. Choon YW, Mohamad MS, Deris S, Chong CK, Omatu S, Corchado JM
    Biomed Res Int, 2015;2015:124537.
    PMID: 25874200 DOI: 10.1155/2015/124537
    Microbial strain optimisation for the overproduction of a desired phenotype has been a popular topic in recent years. Gene knockout is a genetic engineering technique that can modify the metabolism of microbial cells to obtain desirable phenotypes. Optimisation algorithms have been developed to identify the effects of gene knockout. However, the complexities of metabolic networks have made the process of identifying the effects of genetic modification on desirable phenotypes challenging. Furthermore, a vast number of reactions in cellular metabolism often lead to a combinatorial problem in obtaining optimal gene knockout. The computational time increases exponentially as the size of the problem increases. This work reports an extension of Bees Hill Flux Balance Analysis (BHFBA) to identify optimal gene knockouts to maximise the production yield of desired phenotypes while sustaining the growth rate. This proposed method functions by integrating OptKnock into BHFBA for validating the results automatically. The results show that the extension of BHFBA is suitable, reliable, and applicable in predicting gene knockout. Through several experiments conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as model organisms, extension of BHFBA has shown better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes.
  7. Chai LE, Law CK, Mohamad MS, Chong CK, Choon YW, Deris S, et al.
    Malays J Med Sci, 2014 Mar;21(2):20-7.
    PMID: 24876803 MyJurnal
    BACKGROUND: Gene expression data often contain missing expression values. Therefore, several imputation methods have been applied to solve the missing values, which include k-nearest neighbour (kNN), local least squares (LLS), and Bayesian principal component analysis (BPCA). However, the effects of these imputation methods on the modelling of gene regulatory networks from gene expression data have rarely been investigated and analysed using a dynamic Bayesian network (DBN).

    METHODS: In the present study, we separately imputed datasets of the Escherichia coli S.O.S. DNA repair pathway and the Saccharomyces cerevisiae cell cycle pathway with kNN, LLS, and BPCA, and subsequently used these to generate gene regulatory networks (GRNs) using a discrete DBN. We made comparisons on the basis of previous studies in order to select the gene network with the least error.

    RESULTS: We found that BPCA and LLS performed better on larger networks (based on the S. cerevisiae dataset), whereas kNN performed better on smaller networks (based on the E. coli dataset).

    CONCLUSION: The results suggest that the performance of each imputation method is dependent on the size of the dataset, and this subsequently affects the modelling of the resultant GRNs using a DBN. In addition, on the basis of these results, a DBN has the capacity to discover potential edges, as well as display interactions, between genes.

  8. Senan P, Loe Y, Gurpreet K, Hayati A, Haliza A, Novia K, et al.
    Western Pac Surveill Response J, 2011 Jul;2(3):19-24.
    PMID: 23908890 DOI: 10.5365/WPSAR.2010.1.1.014
    Polio vaccination rates remain low in certain regions of Malaysia. The Federal Territory of Kuala Lumpur (FTKL) reported coverage of only 29.3% in 2005 and 61.2% in 2006, despite a Department of Health campaign to provide free three-round immunizations. The estimated numbers of live births used to calculate these rates may have artificially lowered the reported coverage percentages.
  9. Choon YW, Mohamad MS, Deris S, Illias RM, Chong CK, Chai LE, et al.
    PLoS One, 2014;9(7):e102744.
    PMID: 25047076 DOI: 10.1371/journal.pone.0102744
    Microbial strains optimization for the overproduction of desired phenotype has been a popular topic in recent years. The strains can be optimized through several techniques in the field of genetic engineering. Gene knockout is a genetic engineering technique that can engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, the complexities of the metabolic networks have made the process to identify the effects of genetic modification on the desirable phenotypes challenging. Furthermore, a vast number of reactions in cellular metabolism often lead to the combinatorial problem in obtaining optimal gene deletion strategy. Basically, the size of a genome-scale metabolic model is usually large. As the size of the problem increases, the computation time increases exponentially. In this paper, we propose Differential Bees Flux Balance Analysis (DBFBA) with OptKnock to identify optimal gene knockout strategies for maximizing the production yield of desired phenotypes while sustaining the growth rate. This proposed method functions by improving the performance of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by hybridizing Differential Evolution (DE) algorithm into neighborhood searching strategy of BAFBA. In addition, DBFBA is integrated with OptKnock to validate the results for improving the reliability the work. Through several experiments conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as the model organisms, DBFBA has shown a better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes compared to the methods used in previous works.
  10. Hakim SL, Gan CC, Malkit K, Azian MN, Chong CK, Shaari N, et al.
    PMID: 17877212
    In April 2004, an outbreak of acute diarrheal illness occurred among the Orang Asli (aborigine) in the Cameron Highlands, Pahang State, Peninsular Malaysia, where rotavirus was later implicated as the cause. In the course of the epidemic investigation, stool samples were collected and examined for infectious agents including parasites. Soil transmitted helminthes (STH), namely Ascaris lumbricoides (25.7%), Trichuris trichiura (31.1%) and hookworm (8.1%), and intestinal protozoa, which included Giardia lamblia (17.6%), Entamoeba histolytica/E. dispar (9.4%), Blastocystis hominis (8.1%) and Cryptosporidium parvum (2.7%), were detected. Forty-four (59.5%) were infected with at least one parasite, 24 (32.4%), 12 (16.2%) and 8 (10.8%) had single, double and triple parasitic infections, respectively. STH were prevalent with infections occurring as early as in infancy. Giardia lamblia, though the most commonly found parasite in samples from symptomatic subjects, was within the normally reported rate of giardiasis among the various communities in Malaysia, and was an unlikely cause of the outbreak. However, heavy pre-existing parasitic infections could have contributed to the severity of the rotavirus diarrheal outbreak.
  11. Cho SJ, Lee J, Lee HJ, Jo HY, Sinniah M, Kim HY, et al.
    Int J Biol Sci, 2016;12(7):824-35.
    PMID: 27313496 DOI: 10.7150/ijbs.14408
    Rapid diagnostic tests (RDTs) can detect anti-malaria antibodies in human blood. As they can detect parasite infection at the low parasite density, they are useful in endemic areas where light infection and/or re-infection of parasites are common. Thus, malaria antibody tests can be used for screening bloods in blood banks to prevent transfusion-transmitted malaria (TTM), an emerging problem in malaria endemic areas. However, only a few malaria antibody tests are available in the microwell-based assay format and these are not suitable for field application. A novel malaria antibody (Ab)-based RDT using a differential diagnostic marker for falciparum and vivax malaria was developed as a suitable high-throughput assay that is sensitive and practical for blood screening. The marker, merozoite surface protein 1 (MSP1) was discovered by generation of a Plasmodium-specific network and the hierarchical organization of modularity in the network. Clinical evaluation revealed that the novel Malaria Pf/Pv Ab RDT shows improved sensitivity (98%) and specificity (99.7%) compared with the performance of a commercial kit, SD BioLine Malaria P.f/P.v (95.1% sensitivity and 99.1% specificity). The novel Malaria Pf/Pv Ab RDT has potential for use as a cost-effective blood-screening tool for malaria and in turn, reduces TTM risk in endemic areas.
  12. Dass S, Ngui R, Gill BS, Chan YF, Wan Sulaiman WY, Lim YAL, et al.
    Trans R Soc Trop Med Hyg, 2021 08 02;115(8):922-931.
    PMID: 33783526 DOI: 10.1093/trstmh/trab053
    BACKGROUND: We studied the spatiotemporal spread of a chikungunya virus (CHIKV) outbreak in Sarawak state, Malaysia, during 2009-2010.

    METHODS: The residential addresses of 3054 notified CHIKV cases in 2009-2010 were georeferenced onto a base map of Sarawak with spatial data of rivers and roads using R software. The spatiotemporal spread was determined and clusters were detected using the space-time scan statistic with SaTScan.

    RESULTS: Overall CHIKV incidence was 127 per 100 000 population (range, 0-1125 within districts). The average speed of spread was 70.1 km/wk, with a peak of 228 cases/wk and the basic reproduction number (R0) was 3.1. The highest age-specific incidence rate was 228 per 100 000 in adults aged 50-54 y. Significantly more cases (79.4%) lived in rural areas compared with the general population (46.2%, p<0.0001). Five CHIKV clusters were detected. Likely spread was mostly by road, but a fifth of rural cases were spread by river travel.

    CONCLUSIONS: CHIKV initially spread quickly in rural areas mainly via roads, with lesser involvement of urban areas. Delayed spread occurred via river networks to more isolated areas in the rural interior. Understanding the patterns and timings of arboviral outbreak spread may allow targeted vector control measures at key transport hubs or in large transport vehicles.

  13. Wan Mohamed Noor WN, Sandhu SS, Ahmad Mahir HM, Kurup D, Rusli N, Saat Z, et al.
    Malays J Med Sci, 2014 Nov-Dec;21(6):3-8.
    PMID: 25897276 MyJurnal
    The current Ebola outbreak, which is the first to affect West African countries, has been declared to have met the conditions for a Public Health Emergency of International Concern (PHEIC) by the World Health Organization (WHO). Thus, the Ministry of Health (MOH) of Malaysia has taken steps to strengthen and enhanced the five core components of preparedness and response to mitigate the outbreak. The National Crisis Preparedness and Response Centre (CPRC) commands, controls and coordinates the preparedness and response plans for disasters, outbreaks, crises and emergencies (DOCE) related to health in a centralised way. Through standardised case definition and mandatory notification of Ebola by public and private practitioners, surveillance of Ebola is made possible. Government hospitals and laboratories have been identified to manage and diagnose Ebola virus infections, and medical staff members have been trained to handle an Ebola outbreak, with emphasis on strict infection prevention and control practices. Monitoring of the points of entry, focusing on travellers and students visiting or coming from West African countries is made possible by interagency collaborations. To alleviate the public's anxiety, effective risk communications are being delivered through various channels. With experience in past outbreak control, the MOH's preparedness and response plans are in place to abate an Ebola outbreak.
  14. Hong KW, Asmah Hani AW, Nurul Aina Murni CA, Pusparani RR, Chong CK, Verasahib K, et al.
    Infect Genet Evol, 2017 Oct;54:263-270.
    PMID: 28711373 DOI: 10.1016/j.meegid.2017.07.015
    In this study, we report the comparative genomics and phylogenetic analysis of Corynebacterium diphtheriae strain B-D-16-78 that was isolated from a clinical specimen in 2016. The complete genome of C. diphtheriae strain B-D-16-78 was sequenced using PacBio Single Molecule, Real-Time sequencing technology and consists of a 2,474,151-bp circular chromosome with an average GC content of 53.56%. The core genome of C. diphtheriae was also deduced from a total of 74 strains with complete or draft genome sequences and the core genome-based phylogenetic analysis revealed close genetic relationship among strains that shared the same MLST allelic profile. In the context of CRISPR-Cas system, which confers adaptive immunity against re-invading DNA, 73 out of 86 spacer sequences were found to be unique to Malaysian strains which harboured only type-II-C and/or type-I-E-a systems. A total of 48 tox genes which code for the diphtheria toxin were retrieved from the 74 genomes and with the exception of one truncated gene, only nucleotide substitutions were detected when compared to the tox gene sequence of PW8. More than half were synonymous substitution and only two were nonsynonymous substitutions whereby H24Y was predicted to have a damaging effect on the protein function whilst T262V was predicted to be tolerated. Both toxigenic and non-toxigenic toxin-gene bearing strains have been isolated in Malaysia but the repeated isolation of toxigenic strains with the same MLST profile suggests the possibility of some of these strains may be circulating in the population. Hence, efforts to increase herd immunity should be continued and supported by an effective monitoring and surveillance system to track, manage and control outbreak of cases.
  15. Cicero A, Meyer D, Shearer MP, AbuBakar S, Bernard K, Carus WS, et al.
    Emerg Infect Dis, 2019 May;25(5).
    PMID: 31002062 DOI: 10.3201/eid2505.181659
    A strategic multilateral dialogue related to biosecurity risks in Southeast Asia, established in 2014, now includes participants from Singapore, Malaysia, Indonesia, Thailand, Philippines, and the United States. This dialogue is conducted at the nonministerial level, enabling participants to engage without the constraints of operating in their official capacities. Participants reflect on mechanisms to detect, mitigate, and respond to biosecurity risks and highlight biosecurity issues for national leadership. Participants have also identified factors to improve regional and global biosecurity, including improved engagement and collaboration across relevant ministries and agencies, sustainable funding for biosecurity programs, enhanced information sharing for communicable diseases, and increased engagement in international biosecurity forums.
  16. Nealon J, Taurel AF, Capeding MR, Tran NH, Hadinegoro SR, Chotpitayasunondh T, et al.
    PLoS Negl Trop Dis, 2016 Aug;10(8):e0004918.
    PMID: 27532617 DOI: 10.1371/journal.pntd.0004918
    Dengue incidence has increased globally, but empirical burden estimates are scarce. Prospective methods are best-able to capture all severities of disease. CYD14 was an observer-blinded dengue vaccine study conducted in children 2-14 years of age in Indonesia, Malaysia, Thailand, the Philippines, and Vietnam. The control group received no vaccine and resembled a prospective, observational study. We calculated the rates of dengue according to different laboratory or clinical criteria to make inferences about dengue burden, and compared with rates reported in the passive surveillance systems to calculate expansion factors which describe under-reporting. Over 6,933 person-years of observation in the control group there were 319 virologically confirmed dengue cases, a crude attack rate of 4.6%/year. Of these, 92 cases (28.8%) were clinically diagnosed as dengue fever or dengue hemorrhagic fever by investigators and 227 were not, indicating that most symptomatic disease fails to satisfy existing case definitions. When examining different case definitions, there was an inverse relationship between clinical severity and observed incidence rates. CYD14's active surveillance system captured a greater proportion of symptomatic dengue than national passive surveillance systems, giving rise to expansion factors ranging from 0.5 to 31.7. This analysis showed substantial, unpredictable and variable under-reporting of symptomatic dengue, even within a controlled clinical trial environment, and emphasizes that burden estimates are highly sensitive to case definitions. These data will assist in generating disease burden estimates and have important policy implications when considering the introduction and health economics of dengue prevention and control interventions.
  17. Lam SK, Burke D, Capeding MR, Chong CK, Coudeville L, Farrar J, et al.
    Vaccine, 2011 Nov 28;29(51):9417-22.
    PMID: 21864627 DOI: 10.1016/j.vaccine.2011.08.047
    Infection with dengue virus is a major public health problem in the Asia-Pacific region and throughout tropical and sub-tropical regions of the world. Vaccination represents a major opportunity to control dengue and several candidate vaccines are in development. Experts in dengue and in vaccine introduction gathered for a two day meeting during which they examined the challenges inherent to the introduction of a dengue vaccine into the national immunisation programmes of countries of the Asia-Pacific. The aim was to develop a series of recommendations to reduce the delay between vaccine licensure and vaccine introduction. Major recommendations arising from the meeting included: ascertaining and publicising the full burden and cost of dengue; changing the perception of dengue in non-endemic countries to help generate global support for dengue vaccination; ensuring high quality active surveillance systems and diagnostics; and identifying sustainable sources of funding, both to support vaccine introduction and to maintain the vaccination programme. The attendees at the meeting were in agreement that with the introduction of an effective vaccine, dengue is a disease that could be controlled, and that in order to ensure a vaccine is introduced as rapidly as possible, there is a need to start preparing now.
  18. Johari J, Hontz RD, Pike BL, Husain T, Chong CK, Rusli N, et al.
    BMJ Open, 2021 08 26;11(8):e050901.
    PMID: 34446498 DOI: 10.1136/bmjopen-2021-050901
    INTRODUCTION: Middle East respiratory syndrome (MERS) is a viral respiratory infection caused by the MERS-CoV. MERS was first reported in the Kingdom of Saudi Arabia in 2012. Every year, the Hajj pilgrimage to Mecca attracts more than two million pilgrims from 184 countries, making it one of the largest annual religious mass gatherings (MGs) worldwide. MGs in confined areas with a high number of pilgrims' movements worldwide continues to elicit significant global public health concerns. MERCURIAL was designed by adopting a seroconversion surveillance approach to provide multiyear evidence of MG-associated MERS-CoV seroconversion among the Malaysian Hajj pilgrims.

    METHODS AND ANALYSIS: MERCURIAL is an ongoing multiyear prospective cohort study. Every year, for the next 5 years, a cohort of 1000 Hajj pilgrims was enrolled beginning in the 2016 Hajj pilgrimage season. Pre-Hajj and post-Hajj serum samples were obtained and serologically analysed for evidence of MERS-CoV seroconversion. Sociodemographic data, underlying medical conditions, symptoms experienced during Hajj pilgrimage, and exposure to camel and untreated camel products were recorded using structured pre-Hajj and post-Hajj questionnaires. The possible risk factors associated with the seroconversion data were analysed using univariate and multivariate logistic regression. The primary outcome of this study is to better enhance our understanding of the potential threat of MERS-CoV spreading through MG beyond the Middle East.

    ETHICS AND DISSEMINATION: This study has obtained ethical approval from the Medical Research and Ethics Committee (MREC), Ministry of Health Malaysia. Results from the study will be submitted for publication in peer-reviewed journals and presented in conferences and scientific meetings.

    TRIAL REGISTRATION NUMBER: NMRR-15-1640-25391.

  19. van Panhuis WG, Choisy M, Xiong X, Chok NS, Akarasewi P, Iamsirithaworn S, et al.
    Proc Natl Acad Sci U S A, 2015 Oct 20;112(42):13069-74.
    PMID: 26438851 DOI: 10.1073/pnas.1501375112
    Dengue is a mosquito-transmitted virus infection that causes epidemics of febrile illness and hemorrhagic fever across the tropics and subtropics worldwide. Annual epidemics are commonly observed, but there is substantial spatiotemporal heterogeneity in intensity. A better understanding of this heterogeneity in dengue transmission could lead to improved epidemic prediction and disease control. Time series decomposition methods enable the isolation and study of temporal epidemic dynamics with a specific periodicity (e.g., annual cycles related to climatic drivers and multiannual cycles caused by dynamics in population immunity). We collected and analyzed up to 18 y of monthly dengue surveillance reports on a total of 3.5 million reported dengue cases from 273 provinces in eight countries in Southeast Asia, covering ∼ 10(7) km(2). We detected strong patterns of synchronous dengue transmission across the entire region, most markedly during a period of high incidence in 1997-1998, which was followed by a period of extremely low incidence in 2001-2002. This synchrony in dengue incidence coincided with elevated temperatures throughout the region in 1997-1998 and the strongest El Niño episode of the century. Multiannual dengue cycles (2-5 y) were highly coherent with the Oceanic Niño Index, and synchrony of these cycles increased with temperature. We also detected localized traveling waves of multiannual dengue epidemic cycles in Thailand, Laos, and the Philippines that were dependent on temperature. This study reveals forcing mechanisms that drive synchronization of dengue epidemics on a continental scale across Southeast Asia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links