Displaying publications 1 - 20 of 57 in total

  1. Gorain B, Choudhury H, Pandey M, Kesharwani P
    Mater Sci Eng C Mater Biol Appl, 2018 Oct 01;91:868-880.
    PMID: 30033322 DOI: 10.1016/j.msec.2018.05.054
    Localised and targeted potential of nanocarrier for the eminent anticancer agent paclitaxel (PTX) could provide a great platform towards improvement of efficacy with reduction in associated toxicities, whereas incorporation of TPGS could further facilitate delivery in MDR through alteration of its inherent physicochemical properties. Current article therefore puts into perspective on nanocarrier-based recent researches of PTX with special stress towards TPGS-nanoparticle-mediated delivery in the improvement of cancer treatment and then accompanied with the discussion on distinct influence of the fabrication process. Such dynamic fabrications of the nanoparticulate therapy stimulate cellular interaction with frontier area for future research in tumor targeting potential.
  2. Stephen S, Gorain B, Choudhury H, Chatterjee B
    Drug Deliv Transl Res, 2021 Feb 18.
    PMID: 33604837 DOI: 10.1007/s13346-021-00935-4
    The biocompatible nature of mesoporous silica nanoparticles (MSN) attracted researchers' attention to deliver therapeutic agents in the treatment of various diseases, where their porous nature, high drug loading efficiency, and suitability to functionalize with a specific ligand of MSN helped to obtain the desired outcome. The application of MSN has been extended to deliver small chemicals to large-sized peptides or proteins to fight against complex diseases. Recently, formulation researches with MSN have been progressed for various non-conventional drug delivery systems, including liposome, microsphere, oro-dispersible film, 3D-printed formulation, and microneedle. Low bulk density, retaining mesoporous structure during downstream processing, and lack of sufficient in vivo studies are some of the important issues towards the success of mesoporous silica-based advanced drug delivery systems. The present review has aimed to evaluate the application of MSN in advanced drug delivery systems to critically analyze the role of MSN in the respective formulation over other functionalized polymers. Finally, an outlook on the future direction of MSN-based advanced drug delivery systems has been drawn against the existing challenges with this platform.
  3. Gorain B, Choudhury H, Yee GS, Bhattamisra SK
    Curr Pharm Des, 2019;25(26):2828-2841.
    PMID: 31333092 DOI: 10.2174/1381612825666190716102037
    Adenosine is a ubiquitous signaling nucleoside molecule, released from different cells within the body to act on vasculature and immunoescape. The physiological action on the proliferation of tumour cell has been reported by the presence of high concentration of adenosine within the tumour microenvironment, which results in the progression of the tumour, even leading to metastases. The activity of adenosine exclusively depends upon the interaction with four subtypes of heterodimeric G-protein-coupled adenosine receptors (AR), A1, A2A, A2B, and A3-ARs on the cell surface. Research evidence supports that the activation of those receptors via specific agonist or antagonist can modulate the proliferation of tumour cells. The first category of AR, A1 is known to play an antitumour activity via tumour-associated microglial cells to prevent the development of glioblastomas. A2AAR are found in melanoma, lung, and breast cancer cells, where tumour proliferation is stimulated due to inhibition of the immune response via inhibition of natural killer cells cytotoxicity, T cell activity, and tumourspecific CD4+/CD8+ activity. Alternatively, A2BAR helps in the development of tumour upon activation via upregulation of angiogenin factor in the microvascular endothelial cells, inhibition of MAPK and ERK 1/2 phosphorylation activity. Lastly, A3AR is expressed in low levels in normal cells whereas the expression is upregulated in tumour cells, however, agonists to this receptor inhibit tumour proliferation through modulation of Wnt and NF-κB signaling pathways. Several researchers are in search for potential agents to modulate the overexpressed ARs to control cancer. Active components of A2AAR antagonists and A3AR agonists have already entered in Phase-I clinical research to prove their safety in human. This review focused on novel research targets towards the prevention of cancer progression through stimulation of the overexpressed ARs with the hope to protect lives and advance human health.
  4. Choudhury H, Chellappan DK, Sengupta P, Pandey M, Gorain B
    Curr Pharm Des, 2019;25(26):2808-2827.
    PMID: 31309883 DOI: 10.2174/1381612825666190712181955
    The ubiquitous signaling nucleoside molecule, adenosine is found in different cells of the human body to provide its numerous pharmacological role. The associated actions of endogenous adenosine are largely dependent on conformational change of the widely expressed heterodimeric G-protein-coupled A1, A2A, A2B, and A3 adenosine receptors (ARs). These receptors are well conserved on the surface of specific cells, where potent neuromodulatory properties of this bioactive molecule reflected by its easy passage through the rigid blood-brainbarrier, to simultaneously act on the central nervous system (CNS). The minimal concentration of adenosine in body fluids (30-300 nM) is adequate to exert its neuromodulatory action in the CNS, whereas the modulatory effect of adenosine on ARs is the consequence of several neurodegenerative diseases. Modulatory action concerning the activation of such receptors in the CNS could be facilitated towards neuroprotective action against such CNS disorders. Our aim herein is to discuss briefly pathophysiological roles of adenosine on ARs in the modulation of different CNS disorders, which could be focused towards the identification of potential drug targets in recovering accompanying CNS disorders. Researches with active components with AR modulatory action have been extended and already reached to the bedside of the patients through clinical research in the improvement of CNS disorders. Therefore, this review consist of recent findings in literatures concerning the impact of ARs on diverse CNS disease pathways with the possible relevance to neurodegeneration.
  5. Karan S, Choudhury H, Chakra BK, Chatterjee TK
    Asian Pac J Cancer Prev, 2019 07 01;20(7):2181-2194.
    PMID: 31350983 DOI: 10.31557/APJCP.2019.20.7.2181
    Controlled release delivery system of chemotherapeutic agents at the site of colon endorses modern drug-entrapped
    delivery tools, which release the entrappedagents at a controlled rate for anextended period providing patient compliance
    and additional protection from the degradinggastric environment. Thus, the present study was aimed to develop
    and optimize a novel polymeric microsphere of 5-fluorouracil (5-FU) using natural gum katira to obtain an optimal
    therapeutic response at the colon. Due course of experimentation, in-vivo safety profile of the gum katira in an animal
    model was established. Modified solvent extraction/evaporation technique wasemployed to encapsulate 5-FU in the
    natural polymeric microsphere and was characterized using in-vitro studies to investigate particle size, morphology,
    encapsulation efficiency and release of the drug from developed formulation. Formulated and optimized polymeric
    microsphere of 5-FU using gum katira polymer own optimal physicochemical characteristics with a fine spherical particle
    with size ranged from 210.37±7.50 to 314.45±7.80 μm.Targeted microsphere exhibited good cytotoxicity and also has
    high drug entrapment efficiency, and satisfactory release pattern of the drug within a time frame of 12 h. Finally, we
    foresee that the optimized polymeric gum katiramicrosphere of 5-FU could be a promising micro-carrier for efficient
    colon drug targeting delivery tool with improved chemotherapeutic efficacy against colon cancer.
  6. Tripathi PK, Gorain B, Choudhury H, Srivastava A, Kesharwani P
    Heliyon, 2019 Mar;5(3):e01343.
    PMID: 30957038 DOI: 10.1016/j.heliyon.2019.e01343
    Dithranol is one of the important topical agents for the treatment of psoriasis, a chronic inflammatory skin disease with aberrant differentiation of keratinocytes. However, its application is troublesome and inconvenient because of its associated side effects, including staining, burning sensation, irritation, and necrotizing effect on the diseased cells as well as on the normal cells. The purpose of the current investigation was to explore the potential of poly(amido) amine (PAMAM) dendrimers in the topical delivery of dithranol through a novel microsponge based gel. Generation-4 (G4) dendrimers were incorporated into the microsponge based gel formulation by quasi-emulsion solvent diffusion method with varying concentration of polymers, and evaluated for the morphology of the formulation, encapsulation efficiency and skin irritation potential. Percentage yield of the formulation was found to be 66.28%, whereas encapsulation efficiency was ranged between 71.33% to 49.21%, and an average particle size was ranged between 28 ± 1.12 μm to 130 ± 1.01 μm. Surface morphology of developed microsponge was confirmed by scanning electron microscopy, revealed micro-porous nature. The optimized microsponge formulation was found to be stable and recorded non-irritant during cutaneous application of the experimental animals. Further, the pharmacokinetic outcomes of study were showed prolong penetration of the drug through the skin, equivalent to the marketed formulation of dithranol. Therefore, it could be conferred that the microsponge formulation of the PAMAM entrapped dithranol can produce prolonged efficacy without producing toxicities to the skin, and thus can effectively be projected in the treatment of diseases like psoriasis.
  7. Gorain B, Choudhury H, Molugulu N, Athawale RB, Kesharwani P
    Front Public Health, 2020;8:606129.
    PMID: 33363098 DOI: 10.3389/fpubh.2020.606129
    Sudden outbreak of a new pathogen in numbers of pneumonic patients in Wuhan province during December 2019 has threatened the world population within a short period of its occurrence. This respiratory tract-isolated pathogen was initially named as novel coronavirus 2019 (nCoV-2019), but later termed as SARS-CoV-2. The rapid spreading of this infectious disease received the label of pandemic by the World Health Organization within 4 months of its occurrence, which still seeks continuous attention of the researchers to prevent the spread and for cure of the infected patients. The propagation of the disease has been recorded in 215 countries, with more than 25.5 million cases and a death toll of more than 0.85 million. Several measures are taken to control the disease transmission, and researchers are actively engaged in finding suitable therapeutics to effectively control the disease to minimize the mortality and morbidity rates. Several existing potential candidates were explored in the prevention and treatment of worsening condition of COVID-19 patients; however, none of the formulation has been approved for the treatment but used under medical supervision. In this article, a focus has been made to highlight on current epidemiology on the COVID-19 infection, clinical features, diagnosis, and transmission, with special emphasis on treatment measures of the disease at different stages of clinical research and the global economic influence due to this pandemic situation. Progress in the development on vaccine against COVID-19 has also been explored as important measures to immunize people. Moreover, this article is expected to provide information to the researchers, who are constantly combating in the management against this outbreak.
  8. Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H
    J Pharm Sci, 2021 04;110(4):1761-1778.
    PMID: 33515583 DOI: 10.1016/j.xphs.2021.01.021
    Delivering therapeutics to the brain using conventional dosage forms is always a challenge, thus the present study was aimed to formulate mucoadhesive nanoemulsion (MNE) of aripiprazole (ARP) for intranasal delivery to transport the drug directly to the brain. Therefore, a TPGS based ARP-MNE was formulated and optimized using the Box-Behnken statistical design. The improved in vitro release profile of the formulation was in agreement to enhanced ex vivo permeation through sheep mucous membranes with a maximum rate of permeation co-efficient (62.87  cm h-1 × 103) and flux (31.43  μg cm-2.h-1). The pharmacokinetic profile following single-dose administration showed the maximum concentration of drug in the brain (Cmax) of 15.19 ± 2.51  μg mL-1 and Tmax of 1 h in animals with ARP-MNE as compared to 10.57 ± 1.88  μg mL-1 and 1 h, and 2.52 ± 0.38  μg mL-1 and 3 h upon intranasal and intravenous administration of ARP-NE, respectively. Further, higher values of % drug targeting efficiency (96.9%) and % drug targeting potential (89.73%) of ARP-MNE through intranasal administration were investigated. The studies in Wistar rats showed no existence of extrapyramidal symptoms through the catalepsy test and forelimb retraction results. No ex vivo ciliotoxicity on nasal mucosa reflects the safety of the components and delivery tool. Further, findings on locomotor activity and hind-limb retraction test in ARP-MNE treated animals established its antipsychotic efficacy. Thus, it can be inferred that the developed ARP-MNE could effectively be explored as brain delivery cargo in the effective treatment of schizophrenia without producing any toxic manifestation.
  9. Choudhury H, Gorain B, Pandey M, Khurana RK, Kesharwani P
    Int J Pharm, 2019 Jun 30;565:509-522.
    PMID: 31102804 DOI: 10.1016/j.ijpharm.2019.05.042
    The biological barriers in the body have been fabricated by nature to protect the body from foreign molecules. The successful delivery of drugs is limited and being challenged by these biological barriers including the gastrointestinal tract, brain, skin, lungs, nose, mouth mucosa, and immune system. In this review article, we envisage to understand the functionalities of these barriers and revealing various drug-loaded biodegradable polymeric nanoparticles to overcome these barriers and deliver the entrapped drugs to cancer targeted site. Apart from it, tissue-specific multifunctional ligands, linkers and transporters when employed imparts an effective active delivery strategy by receptor-mediated transcytosis. Together, these strategies enable to deliver various drugs across the biological membranes for the treatment of solid tumors and malignant cancer.
  10. Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H
    Int J Pharm, 2020 Aug 30;586:119499.
    PMID: 32505580 DOI: 10.1016/j.ijpharm.2020.119499
    The tight junctions between capillary endothelial cells of the blood-brain barrier (BBB) restricts the entry of therapeutics into the brain. Potential of the intranasal delivery tool has been explored in administering the therapeutics directly to the brain, thus bypassing BBB. The objective of this study was to develop and optimize an intranasal mucoadhesive nanoemulsion (MNE) of asenapine maleate (ASP) in order to enhance the nasomucosal adhesion and direct brain targetability for improved efficacy and safety. Box-Behnken statistical design was used to recognize the crucial formulation variables influencing droplet size, size distribution and surface charge of ASP-NE. ASP-MNE was obtained by incorporating GRAS mucoadhesive polymer, Carbopol 971 in the optimized NE. Optimized ASP-MNE displayed spherical morphology with a droplet size of 21.2 ± 0.15 nm and 0.355 polydispersity index. Improved ex-vivo permeation was observed in ASP-NE and ASP-MNE, compared to the ASP-solution. Finally, the optimized formulation was found to be safe in ex-vivo ciliotoxicity study on sheep nasal mucosa. The single-dose pharmacokinetic study in male Wistar rats revealed a significant increase in concentration of ASP in the brain upon intranasal administration of ASP-MNE, with a maximum of 284.33 ± 5.5 ng/mL. The time required to reach maximum brain concentration (1 h) was reduced compared to intravenous administration of ASP-NE (3 h). Furthermore, it has been established during the course of present study, that the brain targeting capability of ASP via intranasal administration had enhanced drug-targeting efficiency and drug-targeting potential. In the animal behavioral studies, no extrapyramidal symptoms were observed after intranasal administration of ASP-MNE, while good locomotor activity and hind-limb retraction test established its antipsychotic activity in treated animals. Thus, it can be concluded that the developed intranasal ASP-MNE could be used as an effective and safe tool for brain targeting of ASP in the treatment of psychotic disorders.
  11. Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P
    Drug Discov Today, 2020 07;25(7):1174-1188.
    PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013
    Theranostics has the potential to revolutionize the diagnosis, treatment, and prognosis of cancer, where novel drug delivery systems could be used to detect the disease at an early stage with instantaneous treatment. Various preclinical approaches of nanoemulsions with entrapped contrast and chemotherapeutic agents have been documented to act specifically on the tumor microenvironment (TME) for both diagnostic and therapeutic purposes. However, bringing these theranostic nanoemulsions through preclinical trials to patients requires several fundamental hurdles to be overcome, including the in vivo behavior of the delivery tool, degradation, and clearance from the system, as well as long-term toxicities. Here, we discuss recent advances in the application of nanoemulsions in molecular imaging with simultaneous therapeutic efficacy in a single delivery system.
  12. Dutta S, Gorain B, Choudhury H, Roychoudhury S, Sengupta P
    PMID: 34558053 DOI: 10.1007/s11356-021-16581-9
    Untainted environment promotes health, but the last few decades experienced steep upsurge in environmental contaminants posing detrimental physiological impact. The responsible factors mainly include the exponential growth of human population, havoc rise in industrialization, poorly planned urbanization, and slapdash environment management. Environmental degradation can increase the likelihood of human exposure to heavy metals, resulting in health consequences such as reproductive problems. As a result, research into metal-induced causes of reproductive impairment at the genetic, epigenetic, and biochemical levels must be strengthened further. These metals impact upon the female reproduction at all strata of its regulation and functions, be it development, maturation, or endocrine functions, and are linked to an increase in the causes of infertility in women. Chronic exposures to the heavy metals may lead to breast cancer, endometriosis, endometrial cancer, menstrual disorders, and spontaneous abortions, as well as pre-term deliveries, stillbirths. For example, endometriosis, endometrial cancer, and spontaneous abortions are all caused by the metalloestrogen cadmium (Cd); lead (Pb) levels over a certain threshold can cause spontaneous abortion and have a teratogenic impact; toxic amounts of mercury (Hg) have an influence on the menstrual cycle, which can lead to infertility. Impact of environmental exposure to heavy metals on female fertility is therefore a well-known fact. Thus, the underlying mechanisms must be explained and periodically updated, given the growing evidence on the influence of increasing environmental heavy metal load on female fertility. The purpose of this review is to give a concise overview of how heavy metal affects female reproductive health.
  13. Yeo E, Yew Chieng CJ, Choudhury H, Pandey M, Gorain B
    PMID: 34909654 DOI: 10.1016/j.crphar.2021.100019
    The present research had been attempted to formulate and characterize tocotrienols-rich naringenin nanoemulgel for topical application in chronic wound conditions associated with diabetes. In due course, different phases of the nanoemulsion were chosen based on the solubility study, where combination of Capryol 90 and tocotrienols, Solutol HS15, and Transcutol P were selected as oil, surfactant, and cosurfactant, respectively. The nanoemulsions were formulated using the spontaneous emulsification method. Subsequently, Carbopols were incorporated to develop corresponding nanoemulgels of the optimized nanoemulsions. Thermodynamically stable optimized nanoemulgels were evaluated for their globule size, polydispersity index (PDI), surface charge, viscosity, mucoadhesive property, spreadability, in vitro release and release mechanism. Further, increasing polymer concentration in the nanoemulgels was reflected with the increased mucoadhesive property with corresponding decrease in the release rate of the drug. The optimized nanoemulgel (NG1) consisted of uniform dispersion (PDI, 0.452 ​± ​0.03) of the nanometric globules (145.58 ​± ​12.5) of the dispersed phase, and negative surface charge (-21.1 ​± ​3.32 ​mV) with viscosity 297,600 ​cP and good spreadability. In vitro release of naringenin in phosphate buffer saline revealed a sustained release profile up to a maximum of 74.62 ​± ​4.54% from the formulated nanoemulgel (NG1) within the time-frame of 24 ​h. Alternatively, the release from the nanoemulsion was much higher (89.17 ​± ​2.87%), which might be due to lack of polymer coating on the dispersed oil droplets. Moreover, the in vitro release kinetics from the nanoemulgel followed the first-order release and Higuchi model with non-Fickian diffusion. Therefore, encouraging results in this research is evident in bringing a promising future in wound management, particularly associated with diabetes complications.
  14. Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, et al.
    J Pharm Sci, 2017 07;106(7):1736-1751.
    PMID: 28412398 DOI: 10.1016/j.xphs.2017.03.042
    Being an emerging transdermal delivery tool, nanoemulgel, has proved to show surprising upshots for the lipophilic drugs over other formulations. This lipophilic nature of majority of the newer drugs developed in this modern era resulting in poor oral bioavailability, erratic absorption, and pharmacokinetic variations. Therefore, this novel transdermal delivery system has been proved to be advantageous over other oral and topical drug delivery to avoid such disturbances. These nanoemulgels are basically oil-in-water nanoemulsions gelled with the use of some gelling agent in it. This gel phase in the formulation is nongreasy, which favors user compliance and stabilizes the formulation through reduction in surface as well as interfacial tension. Simultaneously, it can be targeted more specifically to the site of action and can avoid first-pass metabolism and relieve the user from gastric/systemic incompatibilities. This brief review is focused on nanoemulgel as a better topical drug delivery system including its components screening, formulation method, and recent pharmacokinetic and pharmacodynamic advancement in research studies carried out by the scientists all over the world. Therefore, at the end of this survey it could be inferred that nanoemulgel can be a better and effective drug delivery tool for the topical system.
  15. Bapat RA, Chaubal TV, Joshi CP, Bapat PR, Choudhury H, Pandey M, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Oct 01;91:881-898.
    PMID: 30033323 DOI: 10.1016/j.msec.2018.05.069
    Oral cavity is a gateway to the entire body and protection of this gateway is a major goal in dentistry. Plaque biofilm is a major cause of majority of dental diseases and although various biomaterials have been applied for their cure, limitations pertaining to the material properties prevent achievement of desired outcomes. Nanoparticle applications have become useful tools for various dental applications in endodontics, periodontics, restorative dentistry, orthodontics and oral cancers. Off these, silver nanoparticles (AgNPs) have been used in medicine and dentistry due to its antimicrobial properties. AgNPs have been incorporated into biomaterials in order to prevent or reduce biofilm formation. Due to greater surface to volume ratio and small particle size, they possess excellent antimicrobial action without affecting the mechanical properties of the material. This unique property of AgNPs makes these materials as fillers of choice in different biomaterials whereby they play a vital role in improving the properties. This review aims to discuss the influence of addition of AgNPs to various biomaterials used in different dental applications.
  16. Md S, Gan SY, Haw YH, Ho CL, Wong S, Choudhury H
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):1211-1219.
    PMID: 30001606 DOI: 10.1016/j.ijbiomac.2018.06.190
    Alzheimer's disease (AD) is an increasingly prevalent neurological disorder of the central nervous system. There is growing evidence that amyloidogenesis is a pathological hallmark for AD; this leads to the formation of senile plaques. Naringenin is a bioflavonoid which has neuroprotective effects through its antioxidant and anti-inflammatory properties. However, its clinical usage is limited due to its inefficient transport across biological membranes. In the present study, a naringenin nanoemulsion was prepared and its neuroprotective effects were tested against β-amyloid induced neurotoxicity in a human neuroblastoma cell line (SH-SY5Y). The optimised, naringenin-loaded nanoemulsion formulation had a droplet size of 113.83 ± 3.35 nm and around 50 nm, as assessed respectively by photon correlation spectroscopy and transmission electron microscopy. The preparation showed a low polydispersity index (0.312 ± 0.003), a high zeta potential (12.4 ± 1.05) and a high percentage transmittance (97.01%). The neuroprotective activity of naringenin nanoemulsions was determined by assessing their ability to protect SH-SY5Y neuroblastoma cells against the neurotoxic effect of beta amyloid (Aβ). Aβ-induced production of reactive oxygen species (ROS), amyloid precursor protein (APP), β-secretase (BACE), total tau and phosphorylated tau (pT231) was also determined. The naringenin loaded nanoemulsion significantly alleviated the direct neurotoxic effects of Aβ on SH-SY5Y cells; this was associated with a down-regulation of APP and BACE expression, indicating reduced amyloidogenesis. Furthermore, it decreased the levels of phosphorylated tau in SH-SY5Y cells exposed to Aβ. These results suggest that a naringenin-loaded nanoemulsion could be a promising agent for the treatment of Alzheimer's disease.
  17. Choudhury H, Gorain B, Chatterjee B, Mandal UK, Sengupta P, Tekade RK
    Curr Pharm Des, 2017;23(17):2504-2531.
    PMID: 27908273 DOI: 10.2174/1381612822666161201143600
    BACKGROUND: Most of the active pharmaceutical ingredients discovered recently in pharmaceutical field exhibits poor aqueous solubility that pose major problem in their oral administration. The oral administration of these drugs gets further complicated due to their short bioavailability, inconsistent absorption and inter/intra subject variability.

    METHODS: Pharmaceutical emulsion holds a significant place as a primary choice of oral drug delivery system for lipophilic drugs used in pediatric and geriatric patients. Pharmacokinetic studies on nanoemulsion mediated drugs delivery approach indicates practical feasibility in regards to their clinical translation and commercialization.

    RESULTS: This review article is to provide an updated understanding on pharmacokinetic and pharmacodynamic features of nanoemulsion delivered via oral, intravenous, topical and nasal route.

    CONCLUSION: The article is of huge interest to formulation scientists working on range of lipophilic drug molecules intended to be administered through oral, intravenous, topical and nasal routes for vivid medical benefits.

  18. Pandey M, Choudhury H, Gunasegaran TAP, Nathan SS, Md S, Gorain B, et al.
    Drug Deliv Transl Res, 2019 04;9(2):520-533.
    PMID: 29488170 DOI: 10.1007/s13346-018-0480-1
    Atopic dermatitis (AD) is a chronically relapsing eczematous skin disease characterised by frequent episodes of rashes, severe flares, and inflammation. Till date, there is no absolute therapy for the treatment of AD; however, topical corticosteroids (TCs) are the majorly prescribed class of drugs for the management of AD in both adults and children. Though, topical route is most preferable; however, limited penetration of therapeutics across the startum cornum (SC) is one of the major challenges for scientists. Therefore, the present study was attempted to fabricate a moderate-potency TC, betamethasone valerate (BMV), in the form of chitosan nanoparticles (CS-NPs) for optimum dermal targeting and improved penetration across the SC. To further improve the targeting efficiency of BMV and to potentiate its therapeutic efficacy, the fabricated BMV-CS-NPs were coated with hyaluronic acid (HA). The prepared NPs were characterised for particle size, zeta potential, polydispersity index (PDI), entrapment efficiency, loading capacity, crystallinity, thermal behaviour, morphology, in vitro release kinetics, drug permeation across the SC, and percentage of drug retained into various skin layers. Results showed that optimised HA-BMV-CS-NPs exhibited optimum physicochemical characteristics including finest particle size (
  19. Gorain B, Choudhury H, Pandey M, Kesharwani P, Abeer MM, Tekade RK, et al.
    Biomed Pharmacother, 2018 Aug;104:496-508.
    PMID: 29800914 DOI: 10.1016/j.biopha.2018.05.066
    Myocardial infarction (cardiac tissue death) is among the most prevalent causes of death among the cardiac patients due to the inability of self-repair in cardiac tissues. Myocardial tissue engineering is regarded as one of the most realistic strategies for repairing damaged cardiac tissue. However, hindrance in transduction of electric signals across the cardiomyocytes due to insulating properties of polymeric materials worsens the clinical viability of myocardial tissue engineering. Aligned and conductive scaffolds based on Carbon nanotubes (CNT) have gained remarkable recognition due to their exceptional attributes which provide synthetic but viable microenvironment for regeneration of engineered cardiomyocytes. This review presents an overview and critical analysis of pharmaceutical implications and therapeutic feasibility of CNT based scaffolds in improving the cardiac tissue regeneration and functionality. The expository analysis of the available evidence revealed that inclusion of single- or multi-walled CNT into fibrous, polymeric, and elastomeric scaffolds results in significant improvement in electrical stimulation and signal transduction through cardiomyocytes. Moreover, incorporation of CNT in engineering scaffolds showed a greater potential of augmenting cardiomyocyte proliferation, differentiation, and maturation and has improved synchronous beating of cardiomyocytes. Despite promising ability of CNT in promoting functionality of cardiomyocytes, their presence in scaffolds resulted in substantial improvement in mechanical properties and structural integrity. Conclusively, this review provides new insight into the remarkable potential of CNT aligned scaffolds in improving the functionality of engineered cardiac tissue and signifies their feasibility in cardiac tissue regenerative medicines and stem cell therapy.
  20. Akrawi SH, Gorain B, Nair AB, Choudhury H, Pandey M, Shah JN, et al.
    Pharmaceutics, 2020 Sep 20;12(9).
    PMID: 32962195 DOI: 10.3390/pharmaceutics12090893
    The potential role of naringenin (NAR), a natural flavonoid, in the treatment of chronic wound has prompted the present research to deliver the drug in nanoemulsion (NE) form, where synergistic role of chitosan was achieved through development of chitosan-coated NAR NE (CNNE). The NE consisted of Capryol 90, Tween 20 and Transcutol P, which was fabricated by low-energy emulsification method to encapsulate NAR within the oil core. The optimization of the formulated NEs was performed using Box-Behnken statistical design to obtain crucial variable parameters that influence globule size, size distribution and surface charge. Finally, the optimized formulation was coated with different concentrations of chitosan and subsequently characterized in vitro. The size of the CNNE was found to be increased when the drug-loaded formulation was coated with chitosan. Controlled release characteristics depicted 67-81% release of NAR from the CNNE, compared to 89% from the NE formulation. Cytotoxicity study of the formulation was performed in vitro using fibroblast cell line (NIH-3T3), where no inhibition in proliferation of the cells was observed with CNNE. Finally, the wound healing potential of the CNNE was evaluated in an abrasion-created wound model in experimental animals where the animals were treated and compared histologically at 0 and 14 days. Significant improvement in construction of the abrasion wound was observed when the animals were treated with formulated CNNE, whereas stimulation of skin regeneration was depicted in the histological examination. Therefore, it could be summarized that the chitosan coating of the developed NAR NE is a potential platform to accelerate healing of wounds.
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links