Displaying all 5 publications

Abstract:
Sort:
  1. Louizi C, Khan MAA, Faisal K, Chowdhury R, Ghosh P, Hossain F, et al.
    Diagn Microbiol Infect Dis, 2023 Feb;105(2):115862.
    PMID: 36493571 DOI: 10.1016/j.diagmicrobio.2022.115862
    The spread of vector habitats along with increasing human mobility can introduce atypical Leishmania species and hence can challenge existing diagnostic practices for rapid detection of active infection with species outside the narrow target range. Here we assessed the pan-Leishmania detection ability of isothermal recombinase polymerase amplification (RPA) assays targeting 18S rRNA gene, cathepsin L-like cysteine proteinase B (Cpb) gene, and kinetoplast minicircle DNA (kDNA) regions. While the lowest limit of detection of the 18S rRNA-RPA and Cpb-RPA assays were estimated as 12 and 17 standard DNA molecules, respectively, both assays could amplify genomic DNA of 7 pathogenic Leishmania species. Evaluation of 18S rRNA-RPA and our previously developed kDNA-RPA assays on 70 real-time PCR-positive leishmaniasis samples of varying pathologies resulted in sensitivity rates of 35.71% and 88.57%, respectively, while the combined sensitivity was 98.57%. Combinatorial application of 18S rRNA-RPA and kDNA-RPA assays can be recommended for further diagnostic assessments.
  2. Chowdhury R, Noh MFM, Ismail SR, van Daalen KR, Kamaruddin PSNM, Zulkiply SH, et al.
    JMIR Res Protoc, 2022 Feb 10;11(2):e31885.
    PMID: 35142634 DOI: 10.2196/31885
    BACKGROUND: Although the burden of premature myocardial infarction (MI) is high in Malaysia, direct evidence on the determinants of MI in this multi-ethnic population remains sparse.

    OBJECTIVE: The Malaysian Acute Vascular Events Risk (MAVERIK) study is a retrospective case-control study established to investigate the genomic, lipid-related, and other determinants of acute MI in Malaysia. In this paper, we report the study protocol and early results.

    METHODS: By June 2019, we had enrolled approximately 2500 patients with their first MI and 2500 controls without cardiovascular disease, who were frequency-matched by age, sex, and ethnicity, from 17 hospitals in Malaysia. For each participant, serum and whole blood have been collected and stored. Clinical, demographic, and behavioral information has been obtained using a 200-item questionnaire.

    RESULTS: Tobacco consumption, a history of diabetes, hypertension, markers of visceral adiposity, indicators of lower socioeconomic status, and a family history of coronary disease were more prevalent in cases than in controls. Adjusted (age and sex) logistic regression models for traditional risk factors indicated that current smoking (odds ratio [OR] 4.11, 95% CI 3.56-4.75; P30 kg/m2; OR 1.19, 95% CI 1.05-1.34; P=.009) were associated with MI in age- and sex-adjusted models.

    CONCLUSIONS: The MAVERIK study can serve as a useful platform to investigate genetic and other risk factors for MI in an understudied Southeast Asian population. It should help to hasten the discovery of disease-causing pathways and inform regionally appropriate strategies that optimize public health action.

    INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/31885.

  3. Howson JMM, Zhao W, Barnes DR, Ho WK, Young R, Paul DS, et al.
    Nat Genet, 2017 Jul;49(7):1113-1119.
    PMID: 28530674 DOI: 10.1038/ng.3874
    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10-8, in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms.
  4. Global Burden of Disease Pediatrics Collaboration, Kyu HH, Pinho C, Wagner JA, Brown JC, Bertozzi-Villa A, et al.
    JAMA Pediatr, 2016 Mar;170(3):267-87.
    PMID: 26810619 DOI: 10.1001/jamapediatrics.2015.4276
    IMPORTANCE: The literature focuses on mortality among children younger than 5 years. Comparable information on nonfatal health outcomes among these children and the fatal and nonfatal burden of diseases and injuries among older children and adolescents is scarce.

    OBJECTIVE: To determine levels and trends in the fatal and nonfatal burden of diseases and injuries among younger children (aged <5 years), older children (aged 5-9 years), and adolescents (aged 10-19 years) between 1990 and 2013 in 188 countries from the Global Burden of Disease (GBD) 2013 study.

    EVIDENCE REVIEW: Data from vital registration, verbal autopsy studies, maternal and child death surveillance, and other sources covering 14,244 site-years (ie, years of cause of death data by geography) from 1980 through 2013 were used to estimate cause-specific mortality. Data from 35,620 epidemiological sources were used to estimate the prevalence of the diseases and sequelae in the GBD 2013 study. Cause-specific mortality for most causes was estimated using the Cause of Death Ensemble Model strategy. For some infectious diseases (eg, HIV infection/AIDS, measles, hepatitis B) where the disease process is complex or the cause of death data were insufficient or unavailable, we used natural history models. For most nonfatal health outcomes, DisMod-MR 2.0, a Bayesian metaregression tool, was used to meta-analyze the epidemiological data to generate prevalence estimates.

    FINDINGS: Of the 7.7 (95% uncertainty interval [UI], 7.4-8.1) million deaths among children and adolescents globally in 2013, 6.28 million occurred among younger children, 0.48 million among older children, and 0.97 million among adolescents. In 2013, the leading causes of death were lower respiratory tract infections among younger children (905.059 deaths; 95% UI, 810,304-998,125), diarrheal diseases among older children (38,325 deaths; 95% UI, 30,365-47,678), and road injuries among adolescents (115,186 deaths; 95% UI, 105,185-124,870). Iron deficiency anemia was the leading cause of years lived with disability among children and adolescents, affecting 619 (95% UI, 618-621) million in 2013. Large between-country variations exist in mortality from leading causes among children and adolescents. Countries with rapid declines in all-cause mortality between 1990 and 2013 also experienced large declines in most leading causes of death, whereas countries with the slowest declines had stagnant or increasing trends in the leading causes of death. In 2013, Nigeria had a 12% global share of deaths from lower respiratory tract infections and a 38% global share of deaths from malaria. India had 33% of the world's deaths from neonatal encephalopathy. Half of the world's diarrheal deaths among children and adolescents occurred in just 5 countries: India, Democratic Republic of the Congo, Pakistan, Nigeria, and Ethiopia.

    CONCLUSIONS AND RELEVANCE: Understanding the levels and trends of the leading causes of death and disability among children and adolescents is critical to guide investment and inform policies. Monitoring these trends over time is also key to understanding where interventions are having an impact. Proven interventions exist to prevent or treat the leading causes of unnecessary death and disability among children and adolescents. The findings presented here show that these are underused and give guidance to policy makers in countries where more attention is needed.

  5. Wang H, Liddell CA, Coates MM, Mooney MD, Levitz CE, Schumacher AE, et al.
    Lancet, 2014 Sep 13;384(9947):957-79.
    PMID: 24797572 DOI: 10.1016/S0140-6736(14)60497-9
    BACKGROUND: Remarkable financial and political efforts have been focused on the reduction of child mortality during the past few decades. Timely measurements of levels and trends in under-5 mortality are important to assess progress towards the Millennium Development Goal 4 (MDG 4) target of reduction of child mortality by two thirds from 1990 to 2015, and to identify models of success.

    METHODS: We generated updated estimates of child mortality in early neonatal (age 0-6 days), late neonatal (7-28 days), postneonatal (29-364 days), childhood (1-4 years), and under-5 (0-4 years) age groups for 188 countries from 1970 to 2013, with more than 29,000 survey, census, vital registration, and sample registration datapoints. We used Gaussian process regression with adjustments for bias and non-sampling error to synthesise the data for under-5 mortality for each country, and a separate model to estimate mortality for more detailed age groups. We used explanatory mixed effects regression models to assess the association between under-5 mortality and income per person, maternal education, HIV child death rates, secular shifts, and other factors. To quantify the contribution of these different factors and birth numbers to the change in numbers of deaths in under-5 age groups from 1990 to 2013, we used Shapley decomposition. We used estimated rates of change between 2000 and 2013 to construct under-5 mortality rate scenarios out to 2030.

    FINDINGS: We estimated that 6·3 million (95% UI 6·0-6·6) children under-5 died in 2013, a 64% reduction from 17·6 million (17·1-18·1) in 1970. In 2013, child mortality rates ranged from 152·5 per 1000 livebirths (130·6-177·4) in Guinea-Bissau to 2·3 (1·8-2·9) per 1000 in Singapore. The annualised rates of change from 1990 to 2013 ranged from -6·8% to 0·1%. 99 of 188 countries, including 43 of 48 countries in sub-Saharan Africa, had faster decreases in child mortality during 2000-13 than during 1990-2000. In 2013, neonatal deaths accounted for 41·6% of under-5 deaths compared with 37·4% in 1990. Compared with 1990, in 2013, rising numbers of births, especially in sub-Saharan Africa, led to 1·4 million more child deaths, and rising income per person and maternal education led to 0·9 million and 2·2 million fewer deaths, respectively. Changes in secular trends led to 4·2 million fewer deaths. Unexplained factors accounted for only -1% of the change in child deaths. In 30 developing countries, decreases since 2000 have been faster than predicted attributable to income, education, and secular shift alone.

    INTERPRETATION: Only 27 developing countries are expected to achieve MDG 4. Decreases since 2000 in under-5 mortality rates are accelerating in many developing countries, especially in sub-Saharan Africa. The Millennium Declaration and increased development assistance for health might have been a factor in faster decreases in some developing countries. Without further accelerated progress, many countries in west and central Africa will still have high levels of under-5 mortality in 2030.

    FUNDING: Bill & Melinda Gates Foundation, US Agency for International Development.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links