Displaying all 12 publications

Abstract:
Sort:
  1. Clark CS, Rampal KG, Thuppil V, Chen CK, Clark R, Roda S
    Environ Res, 2006 Sep;102(1):9-12.
    PMID: 16782088
    Worldwide prohibitions on lead gasoline additives were a major international public health accomplishment, the results of which are still being documented in parts of the world. Although the need to remove lead from paints has been recognized for over a century, evidence reported in this article indicates that lead-based paints for household use, some containing more than 10% lead, are readily available for purchase in some of the largest countries in the world. Sixty-six percent of new paint samples from China, India, and Malaysia were found to contain 5000 ppm (0.5%) or more of lead, the US definition of lead-based paint in existing housing, and 78% contained 600 ppm (0.06%) or more, the limit for new paints. In contrast, the comparable levels in a nearby developed country, Singapore, were 0% and 9%. In examining lead levels in paints of the same brands purchased in different countries, it was found that some brands had lead-based paints in one of the countries and paints meeting US limits in another; another had lead-free paint available in all countries where samples were obtained. Lead-based paints have already poisoned millions of children and likely will cause similar damage in the future as paint use increases as countries in Asia and elsewhere continue their rapid development. The ready availability of lead-based paints documented in this article provides stark evidence of the urgent need for efforts to accomplish an effective worldwide ban on the use of lead in paint.
  2. Wu M, Li M, Yuan J, Liang S, Chen Z, Ye M, et al.
    Pharmacol Res, 2020 05;155:104693.
    PMID: 32057896 DOI: 10.1016/j.phrs.2020.104693
    Hormone therapy continues to be a favourable option in the management of menopausal symptomatology, but the associated risk-benefit ratios with respect to neurodegenerative diseases remain controversial. The study aim was to determine the relation between menopausal hormone therapy and Alzheimer's disease, dementia, and Parkinson's disease in human subjects. A literature search was performed in PubMed/Medline, Cochrane collaboration, and Scopus databases from onset of the database to September 2019. Random-effects model was used to estimate pooled odd ratio (OR) and 95 % confidence intervals (CI). Subgroup analysis was performed based on the type and formulation of hormone. In addition, the time-response effect of this relationship was also assessed based on duration of hormone therapy. Associations between hormone therapy and Alzheimer's disease, dementia, and Parkinson's disease in menopausal women were reported in 28 studies. Pooled results with random effect model showed a significant association between hormone therapy and Alzheimer's disease (OR 1.08, 95 % CI 1.03-1.14, I2: 69 %). This relationship was more pronounced in patients receiving the combined estrogen-progestogen formulation. Moreover, a significant non-linear time-response association between hormone therapy and Alzheimer's disease was also identified (Coef1 = 0.0477, p1<0.001; Coef2 = -0.0932, p2<0.001). Similarly, pooled analysis revealed a significant association between hormone therapy and all-cause dementia (OR 1.16, 95 % CI 1.02-1.31, I2: 19 %). Interestingly, no comparable relationship was uncovered between hormone therapy as a whole and Parkinson's disease (OR 1.14, 95 % CI 0.95-1.38, I2: 65 %); however, sub-group analysis revealed a significant relationship between the disease and progestogen (OR 3.41, 95 % CI 1.23-9.46) or combined estrogen-progestogen formulation use (OR 1.49, 95 % CI 1.34-1.65). Indeed, this association was also found to be driven by duration of exposure (Coef1 = 0.0626, p1 = 0.04). This study reveals a significant direct relationship between the use of certain hormonal therapies and Alzheimer's disease, all-cause dementia, and Parkinson's disease in menopausal women. However, the association appears to shift in direct after five years in the context of Alzheimer's disease, adding further weight to the critical window or timing hypothesis of neurodegeneration and neuroprotection.
  3. Fang Z, Dang M, Zhang W, Wang Y, Kord-Varkaneh H, Nazary-Vannani A, et al.
    Complement Ther Med, 2020 May;50:102395.
    PMID: 32444054 DOI: 10.1016/j.ctim.2020.102395
    BACKGROUND & OBJECTIVE: Effects of walnut intake on anthropometric measurements have been inconsistent among clinical studies. Thus, we conducted a meta-analysis of randomized clinical trials (RCTs) to evaluate and quantify the effects of walnut intake on anthropometric characteristics.

    METHODS: We carried out a systematic search of all available RCTs up to June 2019 in the following electronic databases: PubMed, Scopus, Web of Science and Google Scholar. Pooled weight mean difference (WMD) of the included studies was estimated using random-effects model.

    RESULTS: A total of 27 articles were included in this meta-analysis, with walnuts dosage ranging from 15 to 108 g/d for 2 wk to 2 y. Overall, interventions with walnut intake did not alter waist circumference (WC) (WMD: -0.193 cm, 95 % CI: -1.03, 0.64, p = 0.651), body weight (BW) (0.083 kg, 95 % CI: -0.032, 0.198, p = 0.159), body mass index (BMI) (WMD: -0.40 kg/m,295 % CI: -0.244, 0.164, p = 0.703), and fat mass (FM) (WMD: 0.28 %, 95 % CI: -0.49, 1.06, p = 0.476). Following dose-response evaluation, reduced BW (Coef.= -1.62, p = 0.001), BMI (Coef.= -1.24, p = 0.041) and WC (Coef.= -5.39, p = 0.038) were significantly observed through walnut intake up to 35 g/day. However, the number of studies can be limited as to the individual analysis of the measures through the dose-response fashion.

    CONCLUSIONS: Overall, results from this meta-analysis suggest that interventions with walnut intake does not alter BW, BMI, FM, and WC. To date, there is no discernible evidence to support walnut intake for improving anthropometric indicators of weight loss.

  4. Trabelsi K, Ammar A, Boukhris O, Boujelbane MA, Clark C, Romdhani M, et al.
    Br J Sports Med, 2024 Feb 07;58(3):136-143.
    PMID: 37923379 DOI: 10.1136/bjsports-2023-106826
    OBJECTIVE: To systematically review, summarise and appraise findings of published systematic reviews, with/without meta-analyses, examining associations between Ramadan fasting observance (RO), health-related indices and exercise test performances in athletes and physically active individuals.

    DESIGN: Overview of systematic reviews with assessment of reviews' methodological quality.

    DATA SOURCES: PubMed, Web of Science, Scopus, Cochrane Database of Systematic Reviews, SPORTDiscus, ProQuest, PsycINFO and SciELO.

    ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Systematic reviews with/without meta-analyses examining associations of RO with health-related indices and exercise performances in athletes and physically active individuals.

    RESULTS: Fourteen systematic reviews (seven with meta-analyses) of observational studies, with low-to-critically-low methodological quality, were included. Two reviews found associations between RO and decreased sleep duration in athletes and physically active individuals. One review suggested athletes may experience more pronounced reductions in sleep duration than physically active individuals. One review found associations between RO and impaired sleep quality in athletes and physically active individuals. RO was associated with decreased energy, carbohydrate and water intake in adult-aged athletes, but not adolescents. One review suggests RO was associated with athletes' increased feelings of fatigue and decreased vigour. No association was found between RO and athletes' lean mass or haematological indices. RO was unfavourably associated with changes in athletes' performance during high-intensity exercise testing.

    CONCLUSION: Continuance of training during RO could be associated with athletes' mood state disturbances, decreased sleep duration and performance decline during high-intensity exercise testing, while preserving lean mass. However, careful interpretation is necessary due to the low-to-critically-low methodological quality of the included reviews.

  5. Clark CS, Rampal KG, Thuppil V, Roda SM, Succop P, Menrath W, et al.
    Environ Res, 2009 Oct;109(7):930-6.
    PMID: 19656507 DOI: 10.1016/j.envres.2009.07.002
    In 2006 a report on the analysis for lead in 80 new residential paints from four countries in Asia revealed high levels in three of the countries (China, India and Malaysia) and low levels in a fourth country (Singapore) where a lead in paint regulation was enforced. The authors warned of the possible export of lead-painted consumer products to the United States and other countries and the dangers the lead paint represented to children in the countries where it was available for purchase. The need for a worldwide ban on the use of lead in paints was emphasized to prevent an increase in exposure and disease from this very preventable environmental source. Since the earlier paper almost 300 additional new paint samples have been collected from the four initial countries plus 8 additional countries, three from Asia, three from Africa and two from South America. During the intervening time period two million toys and other items imported into the United States were recalled because the lead content exceeded the United States standard. High lead paints were detected in all 12 countries. The average lead concentration by country ranged from 6988 (Singapore) to 31,960ppm (Ecuador). One multinational company sold high lead paint in one country through January 2007 but sold low lead paint later in 2007 indicating that a major change to cease adding lead to their paints had occurred. However, the finding that almost one-third of the samples would meet the new United States standard for new paint of 90ppm, suggests that the technology is already available in at least 11 of the 12 countries to produce low lead enamel paints for domestic use. The need remains urgent to establish effective worldwide controls to prevent the needless poisoning of millions of children from this preventable exposure.
  6. Taheri M, Saad HB, Washif JA, Reynoso-Sánchez LF, Mirmoezzi M, Youzbashi L, et al.
    Sports Med Open, 2023 Nov 08;9(1):104.
    PMID: 37938473 DOI: 10.1186/s40798-023-00653-w
    BACKGROUND: Although several studies have shown that the Coronavirus Disease 2019 (COVID-19) lockdown has had negative impacts on mental health and eating behaviors among the general population and athletes, few studies have examined the long-term effects on elite and sub-elite athletes. The present study aimed to investigate the long-term impact of COVID-19 lockdown on mental health and eating behaviors in elite versus sub-elite athletes two years into the pandemic. A cross-sectional comparative study was conducted between March and April 2022, involving athletes from 14 countries, using a convenient non-probabilistic and snowball sampling method. A total of 1420 athletes (24.5 ± 7.9 years old, 569 elites, 35% women, and 851 sub-elites, 45% women) completed an online survey-based questionnaire. The questionnaire included a sociodemographic survey, information about the COVID-19 pandemic, the Depression, Anxiety and Stress Scale-21 Items (DASS-21) for mental health assessment, and the Rapid Eating Assessment for Participants (REAP-S) for assessing eating behavior.

    RESULTS: The results showed that compared to sub-elite athletes, elite athletes had lower scores on the DASS-21 (p = .001) and its subscales of depression (p = .003), anxiety (p = .007), and stress (p 

  7. Slik JW, Arroyo-Rodríguez V, Aiba S, Alvarez-Loayza P, Alves LF, Ashton P, et al.
    Proc Natl Acad Sci U S A, 2015 Jun 16;112(24):7472-7.
    PMID: 26034279 DOI: 10.1073/pnas.1423147112
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
  8. Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, et al.
    Nature, 2023 Sep;621(7980):773-781.
    PMID: 37612513 DOI: 10.1038/s41586-023-06440-7
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
  9. Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, et al.
    Nature, 2023 Oct;622(7982):E2.
    PMID: 37752352 DOI: 10.1038/s41586-023-06654-9
  10. Mo L, Zohner CM, Reich PB, Liang J, de Miguel S, Nabuurs GJ, et al.
    Nature, 2023 Dec;624(7990):92-101.
    PMID: 37957399 DOI: 10.1038/s41586-023-06723-z
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
  11. Ma H, Crowther TW, Mo L, Maynard DS, Renner SS, van den Hoogen J, et al.
    Nat Plants, 2023 Nov;9(11):1795-1809.
    PMID: 37872262 DOI: 10.1038/s41477-023-01543-5
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
  12. Sumaila UR, Skerritt DJ, Schuhbauer A, Villasante S, Cisneros-Montemayor AM, Sinan H, et al.
    Science, 2021 10 29;374(6567):544.
    PMID: 34709891 DOI: 10.1126/science.abm1680
    [Figure: see text].
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links