Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Chong CW, Pearce DA, Convey P
    Front Microbiol, 2015;6:1058.
    PMID: 26483777 DOI: 10.3389/fmicb.2015.01058
    Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate. Based on our synthesis, it is clear that spatial patterns of Antarctic prokaryotes can be unique at local scales, while the limited evidence available to date supports the group exhibiting overall regional biogeographical patterns similar to the eukaryotes. We further consider the applicability of the concept of "functional redundancy" for the Antarctic microbial community and highlight the requirements for proper consideration of their important and distinctive roles in Antarctic terrestrial ecosystems.
  2. See-Too WS, Convey P, Pearce DA, Chan KG
    Microb Cell Fact, 2018 Nov 17;17(1):179.
    PMID: 30445965 DOI: 10.1186/s12934-018-1024-6
    BACKGROUND: N-acylhomoserine lactones (AHLs) are well-studied signalling molecules produced by some Gram-negative Proteobacteria for bacterial cell-to-cell communication or quorum sensing. We have previously demonstrated the degradation of AHLs by an Antarctic bacterium, Planococcus versutus L10.15T, at low temperature through the production of an AHL lactonase. In this study, we cloned the AHL lactonase gene and characterized the purified novel enzyme.

    RESULTS: Rapid resolution liquid chromatography analysis indicated that purified AidP possesses high AHL-degrading activity on unsubstituted, and 3-oxo substituted homoserine lactones. Liquid chromatography-mass spectrometry analysis confirmed that AidP functions as an AHL lactonase that hydrolyzes the ester bond of the homoserine lactone ring of AHLs. Multiple sequence alignment analysis and phylogenetic analysis suggested that the aidP gene encodes a novel AHL lactonase enzyme. The amino acid composition analysis of aidP and the homologous genes suggested that it might be a cold-adapted enzyme, however, the optimum temperature is 28 °C, even though the thermal stability is low (reduced drastically above 32 °C). Branch-site analysis of several aidP genes of Planococcus sp. branch on the phylogenetic trees also showed evidence of episodic positive selection of the gene in cold environments. Furthermore, we demonstrated the effects of covalent and ionic bonding, showing that Zn2+ is important for activity of AidP in vivo. The pectinolytic inhibition assay confirmed that this enzyme attenuated the pathogenicity of the plant pathogen Pectobacterium carotovorum in Chinese cabbage.

    CONCLUSION: We demonstrated that AidP is effective in attenuating the pathogenicity of P. carotovorum, a plant pathogen that causes soft-rot disease. This anti-quorum sensing agent is an enzyme with low thermal stability that degrades the bacterial signalling molecules (AHLs) that are produced by many pathogens. Since the enzyme is most active below human body temperature (below 28 °C), and lose its activity drastically above 32 °C, the results of a pectinolytic inhibition assay using Chinese cabbage indicated the potential of this anti-quorum sensing agent to be safely applied in the field trials.

  3. Zaki S, Merican F, Muangmai N, Convey P, Broady P
    Harmful Algae, 2020 03;93:101800.
    PMID: 32307064 DOI: 10.1016/j.hal.2020.101800
    Microcystins (MCs) are secondary metabolites produced by cyanobacteria and have been well-documented in temperate and tropical regions. However, knowledge of the production of MCs in extremely cold environments is still in its infancy. Recently, examination of 100-year-old Antarctic cyanobacterial mats collected from Ross Island and the McMurdo Ice Shelf during Captain R.F. Scott's Discovery Expedition revealed that the presence of MCs in Antarctica is not a new phenomenon. Here, morphological and molecular phylogenetic analyses are used to identify a new microcystin-producing freshwater cyanobacterium, Anagnostidinema pseudacutissimum. The strain was isolated from a deep-frozen (-15 °C) sample collected from a red-brown cyanobacterial mat in a frozen pond at Cape Crozier (Ross Island, continental Antarctica) in 1984-1985. Amplification of the mcyE gene fragment involved in microcystin biosynthesis from A. pseudacutissimum confirmed that it is identical to the sequence from other known microcystin-producing cyanobacteria. Analysis of extracts from this A. pseudacutissimum strain by HPLC-MS/MS confirmed the presence of MC-LR and -YR at concentrations of 0.60 μg/L and MC-RR at concentrations of 0.20 μg/L. This is the first report of microcystin production from a species of Anagnostidinema from Antarctica.
  4. Biersma EM, Jackson JA, Hyvönen J, Koskinen S, Linse K, Griffiths H, et al.
    R Soc Open Sci, 2017 Jul;4(7):170147.
    PMID: 28791139 DOI: 10.1098/rsos.170147
    A bipolar disjunction is an extreme, yet common, biogeographic pattern in non-vascular plants, yet its underlying mechanisms (vicariance or long-distance dispersal), origin and timing remain poorly understood. Here, combining a large-scale population dataset and multiple dating analyses, we examine the biogeography of four bipolar Polytrichales mosses, common to the Holarctic (temperate and polar Northern Hemisphere regions) and the Antarctic region (Antarctic, sub-Antarctic, southern South America) and other Southern Hemisphere (SH) regions. Our data reveal contrasting patterns, for three species were of Holarctic origin, with subsequent dispersal to the SH, while one, currently a particularly common species in the Holarctic (Polytrichum juniperinum), diversified in the Antarctic region and from here colonized both the Holarctic and other SH regions. Our findings suggest long-distance dispersal as the driver of bipolar disjunctions. We find such inter-hemispheric dispersals are rare, occurring on multi-million-year timescales. High-altitude tropical populations did not act as trans-equatorial 'stepping-stones', but rather were derived from later dispersal events. All arrivals to the Antarctic region occurred well before the Last Glacial Maximum and previous glaciations, suggesting that, despite the harsh climate during these past glacial maxima, plants have had a much longer presence in this southern region than previously thought.
  5. Chong CW, Goh YS, Convey P, Pearce D, Tan IK
    Extremophiles, 2013 Sep;17(5):733-45.
    PMID: 23812890 DOI: 10.1007/s00792-013-0555-3
    A range of small- to moderate-scale studies of patterns in bacterial biodiversity have been conducted in Antarctica over the last two decades, most suggesting strong correlations between the described bacterial communities and elements of local environmental heterogeneity. However, very few of these studies have advanced interpretations in terms of spatially associated patterns, despite increasing evidence of patterns in bacterial biogeography globally. This is likely to be a consequence of restricted sampling coverage, with most studies to date focusing only on a few localities within a specific Antarctic region. Clearly, there is now a need for synthesis over a much larger spatial to consolidate the available data. In this study, we collated Antarctic bacterial culture identities based on the 16S rRNA gene information available in the literature and the GenBank database (n > 2,000 sequences). In contrast to some recent evidence for a distinct Antarctic microbiome, our phylogenetic comparisons show that a majority (~75 %) of Antarctic bacterial isolates were highly similar (≥99 % sequence similarity) to those retrieved from tropical and temperate regions, suggesting widespread distribution of eurythermal mesophiles in Antarctic environments. However, across different Antarctic regions, the dominant bacterial genera exhibit some spatially distinct diversity patterns analogous to those recently proposed for Antarctic terrestrial macroorganisms. Taken together, our results highlight the threat of cross-regional homogenisation in Antarctic biodiversity, and the imperative to include microbiota within the framework of biosecurity measures for Antarctica.
  6. Salwoom L, Raja Abd Rahman RNZ, Salleh AB, Mohd Shariff F, Convey P, Mohamad Ali MS
    Int J Mol Sci, 2019 Mar 13;20(6).
    PMID: 30871178 DOI: 10.3390/ijms20061264
    In recent years, studies on psychrophilic lipases have become an emerging area of research in the field of enzymology. The study described here focuses on the cold-adapted organic solvent tolerant lipase strain Pseudomonas sp. LSK25 isolated from Signy Station, South Orkney Islands, maritime Antarctic. Strain LSK25 lipase was successfully cloned, sequenced, and over-expressed in an Escherichia coli system. Sequence analysis revealed that the lipase gene of Pseudomonas sp. LSK25 consists of 1432 bp, lacks an N-terminal signal peptide and encodes a mature protein consisting of 476 amino acids. The recombinant LSK25 lipase was purified by single-step purification using Ni-Sepharose affinity chromatography and had a molecular mass of approximately 65 kDa. The final recovery and purification fold were 44% and 1.3, respectively. The LSK25 lipase was optimally active at 30 °C and at pH 6. Stable lipolytic activity was reported between temperatures of 5⁻30 °C and at pH 6⁻8. A significant enhancement of lipolytic activity was observed in the presence of Ca2+ ions, the organic lipids of rice bran oil and coconut oil, a synthetic C12 ester and a wide range of water immiscible organic solvents. Overall, lipase strain LSK25 is a potentially desirable candidate for biotechnological application, due to its stability at low temperatures, across a range of pH and in organic solvents.
  7. Choo WT, Teoh ML, Phang SM, Convey P, Yap WH, Goh BH, et al.
    Front Pharmacol, 2020;11:1086.
    PMID: 32848730 DOI: 10.3389/fphar.2020.01086
    The skin is the first line of defense against pathogen and other environmental pollutant. The body is constantly exposed to reactive oxygen species (ROS) that stimulates inflammatory process in the skin. Many studies have linked ROS to various inflammatory skin diseases. Patients with skin diseases face various challenges with inefficient and inappropriate treatment in managing skin diseases. Overproduction of ROS in the body will result in oxidative stress which will lead to various cellular damage and alter normal cell function. Multiple signaling pathways are seen to have significant effects during ROS-mediated oxidative stress. In this review, microalgae have been selected as a source of natural-derived antioxidant to combat inflammatory skin diseases that are prominent in today's society. Several studies have demonstrated that bioactive compounds isolated from microalgae have anti-inflammation and anti-oxidative properties that can help remedy various skin diseases. These compounds are able to inhibit production of pro-inflammatory cytokines and reduce the expression of inflammatory genes. Bioactive compounds from microalgae work in action by altering enzyme activities, regulating cellular activities, targeting major signaling pathways related to inflammation.
  8. See-Too WS, Lim YL, Ee R, Convey P, Pearce DA, Yin WF, et al.
    J Biotechnol, 2016 Mar 20;222:84-5.
    PMID: 26876481 DOI: 10.1016/j.jbiotec.2016.02.017
    Pseudomonas sp. strain L10.10 (=DSM 101070) is a psychrotolerant bacterium which was isolated from Lagoon Island, Antarctica. Analysis of its complete genome sequence indicates its possible role as a plant-growth promoting bacterium, including nitrogen-fixing ability and indole acetic acid (IAA)-producing trait, with additional suggestion of plant disease prevention attributes via hydrogen cyanide production.
  9. See-Too WS, Convey P, Pearce DA, Lim YL, Ee R, Yin WF, et al.
    J Biotechnol, 2016 Mar 10;221:114-5.
    PMID: 26808870 DOI: 10.1016/j.jbiotec.2016.01.026
    Planococcus rifietoensis M8(T) (=DSM 15069(T)=ATCC BAA-790(T)) is a halotolerant bacterium with potential plant growth promoting properties isolated from an algal mat collected from a sulfurous spring in Campania (Italy). This paper presents the first complete genome of P. rifietoensis M8(T). Genes coding for various potentially plant growth promoting properties were identified within its genome.
  10. Everatt MJ, Convey P, Bale JS, Worland MR, Hayward SA
    J Therm Biol, 2015 Dec;54:118-32.
    PMID: 26615734 DOI: 10.1016/j.jtherbio.2014.05.004
    As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored.
  11. See-Too WS, Salazar S, Ee R, Convey P, Chan KG, Peix Á
    Syst Appl Microbiol, 2017 Jun;40(4):191-198.
    PMID: 28501448 DOI: 10.1016/j.syapm.2017.03.002
    In this study we analysed three bacterial strains coded L10.10T, A4R1.5 and A4R1.12, isolated in the course of a study of quorum-quenching bacteria occurring in Antarctic soil. The 16S rRNA gene sequence was identical in the three strains and showed 99.7% pairwise similarity with respect to the closest related species Pseudomonas weihenstephanensis WS4993T. Therefore, the three strains were classified within the genus Pseudomonas. Analysis of housekeeping genes (rpoB, rpoD and gyrB) sequences showed similarities of 84-95% with respect to the closest related species of Pseudomonas, confirming its phylogenetic affiliation. The ANI values were less than 86% to the closest related species type strains. The respiratory quinone is Q9. The major fatty acids are C16:0, C16:1 ω7c/ C16:1 ω6c in summed feature 3 and C18:1 ω7c / C18:1 ω6c in summed feature 8. The strains are oxidase- and catalase-positive. Growth occurs at 4-30°C, and at pH 4.0-10. The DNA G+C content is 58.2-58.3mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains L10.10T, A4R1.5 and A4R1.12 into a novel species of Pseudomonas, for which the name P. versuta sp. nov. is proposed. The type strain is L10.10T (LMG 29628T, DSM 101070T).
  12. Radzi R, Muangmai N, Broady P, Wan Omar WM, Lavoue S, Convey P, et al.
    PLoS One, 2019;14(11):e0224395.
    PMID: 31682631 DOI: 10.1371/journal.pone.0224395
    Terrestrial cyanobacteria are very diverse and widely distributed in Antarctica, where they can form macroscopically visible biofilms on the surfaces of soils and rocks, and on benthic surfaces in fresh waters. We recently isolated several terrestrial cyanobacteria from soils collected on Signy Island, South Orkney Islands, Antarctica. Among them, we found a novel species of Nodosilinea, named here as Nodosilinea signiensis sp. nov. This new species is morphologically and genetically distinct from other described species. Morphological examination indicated that the new species is differentiated from others in the genus by cell size, cell shape, filament attenuation, sheath morphology and granulation. 16S rDNA phylogenetic analyses clearly confirmed that N. signiensis belongs to the genus Nodosilinea, but that it is genetically distinct from other known species of Nodosilinea. The D1-D1´ helix of the 16S-23S ITS region of the new species was also different from previously described Nodosilinea species. This is the first detailed characterization of a member of the genus Nodosilinea from Antarctica as well as being a newly described species.
  13. Roslee AFA, Zakaria NN, Convey P, Zulkharnain A, Lee GLY, Gomez-Fuentes C, et al.
    Extremophiles, 2020 Mar;24(2):277-291.
    PMID: 31863235 DOI: 10.1007/s00792-019-01153-0
    Petroleum pollution is a major concern in Antarctica due to the persistent nature of its hydrocarbon components coupled with the region's extreme environmental conditions, which means that bioremediation approaches are largely inapplicable at present. The current study assessed the ability of the psychrotolerant phenol-degrader, Rhodococcus sp. strain AQ5-07, to assimilate diesel fuel as the sole carbon source. Factors expected to influence the efficiency of diesel degradation, including the initial hydrocarbon concentration, nitrogen source concentration and type, temperature, pH and salinity were studied. Strain AQ5-07 displayed optimal cell growth and biodegradation activity at 1% v/v initial diesel concentration, 1 g/L NH4Cl concentration, pH 7 and 1% NaCl during one-factor-at-a-time (OFAT) analyses. Strain AQ5-07 was psychrotolerant based on its optimum growth temperature being near 20 °C. In conventionally optimised media, strain AQ5-07 showed total petroleum hydrocarbons (TPH) mineralisation of 75.83%. However, the optimised condition for TPH mineralisation predicted through statistical response surface methodology (RSM) enhanced the reduction to 90.39% within a 2 days incubation. Our preliminary data support strain AQ5-07 being a potential candidate for real-field soil bioremediation by specifically adopting sludge-phase bioreactor system in chronically cold environments such as Antarctica. The study also confirmed the utility of RSM in medium optimisation.
  14. See-Too WS, Ee R, Lim YL, Convey P, Pearce DA, Yin WF, et al.
    Sci Rep, 2017 02 22;7:42968.
    PMID: 28225085 DOI: 10.1038/srep42968
    Planococcus is a Gram-positive halotolerant bacterial genus in the phylum Firmicutes, commonly found in various habitats in Antarctica. Quorum quenching (QQ) is the disruption of bacterial cell-to-cell communication (known as quorum sensing), which has previously been described in mesophilic bacteria. This study demonstrated the QQ activity of a psychrotolerant strain, Planococcus versutus strain L10.15T, isolated from a soil sample obtained near an elephant seal wallow in Antarctica. Whole genome analysis of this bacterial strain revealed the presence of an N-acyl homoserine lactonase, an enzyme that hydrolyzes the ester bond of the homoserine lactone of N-acyl homoserine lactone (AHLs). Heterologous gene expression in E. coli confirmed its functions for hydrolysis of AHLs, and the gene was designated as aidP (autoinducer degrading gene from Planococcus sp.). The low temperature activity of this enzyme suggested that it is a novel and uncharacterized class of AHL lactonase. This study is the first report on QQ activity of bacteria isolated from the polar regions.
  15. Usman AS, Merican F, Zaki S, Broady P, Convey P, Muangmai N
    Harmful Algae, 2022 Dec;120:102336.
    PMID: 36470600 DOI: 10.1016/j.hal.2022.102336
    Twenty cyanobacterial strains of eight morphospecies isolated from deep-frozen (-15 °C) mat samples originally collected on Ross Island, in Victoria Land, and on the McMurdo Ice Shelf were screened for the presence of genes encoding for production of anatoxins, cylindrospermopsin, microcystin/nodularin and saxitoxin. One strain of each of Microcoleus autumnalis and Phormidesmis priestleyi and two strains of Wilmottia murrayi were found to produce microcystin. No toxin production was detected in the other 16 strains representing five species. The four toxin-producing strains were characterised using both morphological and molecular approaches. Phylogenetic analyses using partial 16S rRNA sequences were consistent with the morphological identification of all four strains. They were all found to contain a fragment of the mcyE gene, which is involved in microcystin biosynthesis. ELISA analysis of extracts from cultures of these strains confirmed the presence of low concentrations of microcystin: 0.35 μg/L in M. autumnalis, <0.15 μg/L in P. priestleyi, 1.60 μg/L in W. murrayi strain 1 and 0.9 μg/L in W. murrayi strain 2. This study includes the first report of microcystin synthesis by W. murrayi.
  16. Zahri KNM, Zulkharnain A, Gomez-Fuentes C, Sabri S, Abdul Khalil K, Convey P, et al.
    Life (Basel), 2021 May 20;11(5).
    PMID: 34065265 DOI: 10.3390/life11050456
    Hydrocarbons can cause pollution to Antarctic terrestrial and aquatic ecosystems, both through accidental release and the discharge of waste cooking oil in grey water. Such pollutants can persist for long periods in cold environments. The native microbial community may play a role in their biodegradation. In this study, using mixed native Antarctic bacterial communities, several environmental factors influencing biodegradation of waste canola oil (WCO) and pure canola oil (PCO) were optimised using established one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The factors include salinity, pH, type of nitrogen and concentration, temperature, yeast extract and initial substrate concentration in OFAT and only the significant factors proceeded for the statistical optimisation through RSM. High concentration of substrate targeted for degradation activity through RSM compared to OFAT method. As for the result, all factors were significant in PBD, while only 4 factors were significant in biodegradation of PCO (pH, nitrogen concentration, yeast extract and initial substrate concentration). Using OFAT, the most effective microbial community examined was able to degrade 94.42% and 86.83% (from an initial concentration of 0.5% (v/v)) of WCO and PCO, respectively, within 7 days. Using RSM, 94.99% and 79.77% degradation of WCO and PCO was achieved in 6 days. The significant interaction for the RSM in biodegradation activity between temperature and WCO concentration in WCO media were exhibited. Meanwhile, in biodegradation of PCO the significant factors were between (1) pH and PCO concentration, (2) nitrogen concentration and yeast extract, (3) nitrogen concentration and PCO concentration. The models for the RSM were validated for both WCO and PCO media and it showed no significant difference between experimental and predicted values. The efficiency of canola oil biodegradation achieved in this study provides support for the development of practical strategies for efficient bioremediation in the Antarctic environment.
  17. Azizan AA, Radzi R, Omar WMW, Convey P, Merican FMMS
    Trop Life Sci Res, 2020 Apr;31(1):85-105.
    PMID: 32963713 DOI: 10.21315/tlsr2020.31.1.6
    Despite the abundance of streams and rivers in Malaysia, the algal communities of these lotic ecosystems have remained largely unstudied. In a one-year floristic survey conducted from December 2014, 24 cyanobacterial morphospecies were identified for the first time from Tukun River, Penang Forest Reserve. Ten morphospecies were identified directly from field specimens while the remaining 14 morphospecies were identified only in cultures derived from the field samples. A total of 17 morphospecies; Leptolyngbya cf. boryana, L. cf. foveolarum, L. valderiana, Chroococcus cf. cohaerens, C. cf. disperses, C. cf. membraninus, C. cf. minutus, C. cf. varius, Gloeocapsopsis cf. crepidinum, Geitlerinema cf. tenuius, Phormidium simplicissimum, Dolichospermum sp., Fischerella sp., Homoeoptyche repens, Nematoplaca inscrustans, Scytonema hofmanii and S. stuposum are new records for Malaysia. Crusts were the most dominant macroscopic forms (seven morphospecies) followed by mats (three morphospecies). Scytonema was the most frequently encountered genus, occurring at 8/9 sampling sites. The presence of heterocytous cyanobacteria (S. stuposum, S. hofmanni) in 8/9 sampling sites is consistent with the low nitrate levels (< 0.74 mg/L) recorded throughout the study stream. Chroococcales were dominant in both upper and middle parts of the stream. The morphospecies present showed distinct distribution patterns despite apparently minimal variations in ecological parameters such as temperature, dissolved oxygen, pH and conductivity between the sampling sites. This study provides important new baseline information in understanding the diversity of periphytic cyanobacteria not only in Penang Island but more widely in Malaysia. This information can make a useful contribution in biomonitoring stream health.
  18. Pointing SB, Burkhard Büdel, Convey P, Gillman LN, Körner C, Leuzinger S, et al.
    Front Plant Sci, 2015;6:692.
    PMID: 26442009 DOI: 10.3389/fpls.2015.00692
    The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favorable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on diversity of polar photoautotrophs and to the current status of plants in Arctic and Antarctic conservation policy frameworks.
  19. Syuhada NH, Merican F, Zaki S, Broady PA, Convey P, Muangmai N
    Sci Rep, 2022 Jan 20;12(1):1080.
    PMID: 35058560 DOI: 10.1038/s41598-022-05116-y
    This study was initiated following the serendipitous discovery of a unialgal culture of a Stichococcus-like green alga (Chlorophyta) newly isolated from soil collected on Signy Island (maritime Antarctica) in growth medium supplemented with 100 µg/mL cycloheximide (CHX, a widely used antibiotic active against most eukaryotes). In order to test the generality of CHX resistance in taxa originally identified as members of Stichococcus (the detailed taxonomic relationships within this group of algae have been updated since our study took place), six strains were studied: two strains isolated from recent substrate collections from Signy Island (maritime Antarctica) ("Antarctica" 1 and "Antarctica" 2), one isolated from this island about 50 years ago ("Antarctica" 3) and single Arctic ("Arctic"), temperate ("Temperate") and tropical ("Tropical") strains. The sensitivity of each strain towards CHX was compared by determining the minimum inhibitory concentration (MIC), and growth rate and lag time when exposed to different CHX concentrations. All strains except "Temperate" were highly resistant to CHX (MIC > 1000 µg/mL), while "Temperate" was resistant to 62.5 µg/mL (a concentration still considerably greater than any previously reported for algae). All highly resistant strains showed no significant differences in growth rate between control and treatment (1000 µg/mL CHX) conditions. Morphological examination suggested that four strains were consistent with the description of the species Stichococcus bacillaris while the remaining two conformed to S. mirabilis. However, based on sequence analyses and the recently available phylogeny, only one strain, "Temperate", was confirmed to be S. bacillaris, while "Tropical" represents the newly erected genus Tetratostichococcus, "Antarctica 1" Tritostichococcus, and "Antarctica 2", "Antarctica 3" and "Arctic" Deuterostichococcus. Both phylogenetic and CHX sensitivity analyses suggest that CHX resistance is potentially widespread within this group of algae.
  20. See-Too WS, Tan JY, Ee R, Lim YL, Convey P, Pearce DA, et al.
    Mar Genomics, 2016 Apr 22.
    PMID: 27117861 DOI: 10.1016/j.margen.2016.04.007
    Planococcus kocurii ATCC 43650(T) is a halotolerant and psychrotolerant bacterium isolated from the skin of a North sea cod. Here, we present the first complete genome and annotation of P. kocurii ATCC 43650(T), identifying its potential as a plant growth promoting bacterium and its capability in the biosynthesis of butanol.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links