Displaying all 4 publications

Abstract:
Sort:
  1. Corlett RT, Lucas PW
    Oecologia, 1990 Feb;82(2):166-171.
    PMID: 28312661 DOI: 10.1007/BF00323531
    The seeds in fruits consumed by primates may be chewed and digested, swallowed and defecated intact, or separated from the flesh and spat out. We show by a combination of close field observations and experiments with caged animals, that long-tailed macaques (Macaca fascicularis) have a remarkably low threshold of 3-4 mm for swallowing seeds and also that wild macaques rarely break them. The seeds of 69% of the ripe fruit species eaten are spat out intact or cleaned outside the mouth and dropped. Seed-spitting significantly reduces the swallowed food bulk and may lessen the risk of releasing seed toxins during mastication. However, it requires that even small fruits are processed in the mouth one or a few at a time. We suggest that fruit storage in the cheek pouches of cercopithecine monkeys allows them to spit seeds individually without excessively slowing fruit intake while feeding on patchily distributed fruit. In contrast, Apes and New World monkeys apparently swallow and defecate most ripe seeds in their diet and colobine monkeys break and digest them, detoxifying seed defenses by bacterial fermentation.
  2. Matsuda I, Higashi S, Otani Y, Tuuga A, Bernard H, Corlett RT
    Integr Zool, 2013 Dec;8(4):395-9.
    PMID: 24344963 DOI: 10.1111/1749-4877.12033
    Although the role of primates in seed dispersal is generally well recognized, this is not the case for colobines, which are widely distributed in Asian and African tropical forests. Colobines consume leaves, seeds and fruits, usually unripe. A group of proboscis monkeys (Colobinae, Nasalis larvatus) consisting of 1 alpha-male, 6 adult females and several immatures, was observed from May 2005 to May 2006. A total of 400 fecal samples from focal group members covering 13 months were examined, with over 3500 h of focal observation data on the group members in a forest along the Menanggul River, Sabah, Malaysia. Intact small seeds were only found in 23 of 71 samples in Nov 2005, 15 of 38 in Dec 2005 and 5 of 21 in Mar 2006. Seeds of Ficus (all <1.5 mm in length) were found in all 3 months and seeds from Antidesma thwaitesianum (all <3 mm) and Nauclea subdita (all <2 mm) only in Nov and Dec, which was consistent with members of the study group consuming fruits of these species mostly at these times. To our knowledge, these are the first records of seeds in the fecal samples of colobines. Even if colobines pass relatively few seeds intact, their high abundance and biomass could make them quantitatively significant in seed dispersal. The potential role of colobines as seed dispersers should be considered by colobine researchers.
  3. Sreekar R, Katabuchi M, Nakamura A, Corlett RT, Slik JWF, Fletcher C, et al.
    R Soc Open Sci, 2018 Sep;5(9):181168.
    PMID: 30839691 DOI: 10.1098/rsos.181168
    The relationship between β-diversity and latitude still remains to be a core question in ecology because of the lack of consensus between studies. One hypothesis for the lack of consensus between studies is that spatial scale changes the relationship between latitude and β-diversity. Here, we test this hypothesis using tree data from 15 large-scale forest plots (greater than or equal to 15 ha, diameter at breast height ≥ 1 cm) across a latitudinal gradient (3-30o) in the Asia-Pacific region. We found that the observed β-diversity decreased with increasing latitude when sampling local tree communities at small spatial scale (grain size ≤0.1 ha), but the observed β-diversity did not change with latitude when sampling at large spatial scales (greater than or equal to 0.25 ha). Differences in latitudinal β-diversity gradients across spatial scales were caused by pooled species richness (γ-diversity), which influenced observed β-diversity values at small spatial scales, but not at large spatial scales. Therefore, spatial scale changes the relationship between β-diversity, γ-diversity and latitude, and improving sample representativeness avoids the γ-dependence of β-diversity.
  4. Ripple WJ, Chapron G, López-Bao JV, Durant SM, Macdonald DW, Lindsey PA, et al.
    Bioscience, 2016 Oct 01;66(10):807-812.
    PMID: 28533560 DOI: 10.1093/biosci/biw092
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links