Displaying all 13 publications

Abstract:
Sort:
  1. Dahlan I, Dawend J
    Trop Anim Health Prod, 2013 Oct;45(7):1469-76.
    PMID: 23475732 DOI: 10.1007/s11250-013-0383-6
    We examined the growth, reproduction, rutting behavior, and health status of sambar deer (Cervus unicolor brookei) in secondary Acacia mangium plantation. The data were collected over 11 years from a breeding herd of 21 stags and 33 hinds in Sabal Forest Reserve, Sarawak, Malaysia. Brody's growth model of the pooled data is Y t  = 148.56 (1 - 0.98e(-0.023t)), which estimates that maximum weights of adults are 184 and 115 kg for males and females respectively. Sambar deer are nonseasonal breeders with the breeding peak in February. Although the earliest age at which a female reached sexual maturity was 11 months, the mean age was 23 ± 7 months. Mean age of first fawning was 32 ± 8 months. Mean gestation period was 259 ± 12 days (n = 82). Stags shed antlers mostly between March and July. Velvet hardens at 103 ± 27 days (n = 23), and velvet harvesting is best at 7-9 weeks when antler length is 25-30 cm. Sambar deer are suitable as a farm species in forest plantations and have a vast potential to uplift rural living standards.
  2. Zwain HM, Chang SM, Dahlan I
    Prep Biochem Biotechnol, 2019;49(4):344-351.
    PMID: 30712465 DOI: 10.1080/10826068.2019.1566144
    Microbial content formed in bioreactors plays a significant role in the anaerobic process. Therefore, the physicochemical characteristics of microbial content in a modified anaerobic inclining-baffled reactor (MAI-BR) treating recycled paper mill effluent (RPME) were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG), and derivative thermogravimetric (DTG) analyses, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET), and surface area analyzer. FTIR spectra revealed that the microbial content had stronger characteristic peaks corresponding to alcohols, water, lipids carbohydrates, proteins, and mineral compounds. Calcite, muscovite, and lepidolite were the prevalent mineral phases found by XRD analysis. The elemental of these minerals like C, Ca, N, O, and Si was confirmed by XPS results. The microbial content samples from each compartment showed similar thermal behavior. SEM images showed that straight rod-shaped and Methanosaeta-like microorganisms were predominant, whereas C, O, and Ca were noticed by EDS on the surface of granules. The BET surface areas and pores of granules are found to decline throughout the reactor's compartment, where Compartment 1 had the largest values. Thus, the findings of this study establish further understanding of the physicochemical properties of microbial content formed in MAI-BR during the RPME treatment.
  3. Zwain HM, Aziz HA, Dahlan I
    Environ Technol, 2018 Jun;39(12):1557-1565.
    PMID: 28514902 DOI: 10.1080/09593330.2017.1332692
    The performance of modified anaerobic inclining-baffled reactor (MAI-BR) treating recycled paper mill effluent (RPME) was investigated by varying the influent chemical oxygen demand (CODin) concentration from 1000 to 4000 mg/L, and the hydraulic retention time (HRT) from 3 to 1 day, corresponding to an organic loading rate increase from 0.33 to 4 g COD/L day. Throughout 126 days of operation, a maximum removal efficiency of up to 96% of chemical oxygen demand (COD) and 99% of biological oxygen demand, methane (CH4) yield of 0.259 L CH4/g COD, and a stable effluent pH of 6.5 were achieved. Furthermore, the compartmental performance showed that most of the organic substrates were removed in the initial two compartments, resulting in low pH and alkalinity levels and a high concentration of volatile fatty acids. Overall, the results showed that the MAI-BR successfully treated RPME, and the performance was affected by the variation of HRT more than the CODin.
  4. Hassan SR, Zaman NQ, Dahlan I
    Prep Biochem Biotechnol, 2020;50(3):234-239.
    PMID: 31762367 DOI: 10.1080/10826068.2019.1692214
    Recycled paper mill effluent (RPME) consists of various organic and inorganic compounds. In this study, modified anaerobic hybrid baffled (MAHB) bioreactor has been successfully used to anaerobically digest RPME. The anaerobic digestion was investigated in relation to methane production rate, lignin removal, and chemical oxygen demand (COD) removal, with respect to organic loading rate (OLR) and hydraulic retention time (HRT). The analysis using kinetic study was carried out under mesophilic conditions (37 ± 2 °C) and influent COD concentrations (1000-4000 mg L-1), to prove its practicability towards RPME treatment. First-order kinetic model was used to clarify the behavior of RPME anaerobic digestion under different OLRs (0.14-4.00 g COD L-1 d-1) and HRT (1-7 d). The result shows that the highest COD removal efficiency and methane production rate were recorded to be 98.07% and 2.2223 L CH4 d-1, respectively. This result was further validated by evaluating the biokinetic coefficients (reaction rate constant (k) and maximum biogas production (ym)), which gave values of k = 0.57 d-1 and ym = 0.331 L d-1. This kinetic data concludes that MAHB presented satisfactory performance towards COD removal with relatively high methane production, which can be further utilized as on-site energy supply.
  5. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2011 Jan 30;185(2-3):1609-13.
    PMID: 21071143 DOI: 10.1016/j.jhazmat.2010.10.053
    In this study, the kinetic parameters of rice husk ash (RHA)/CaO/CeO(2) sorbent for SO(2) and NO sorptions were investigated in a laboratory-scale stainless steel fixed-bed reactor. Data experiments were obtained from our previous results and additional independent experiments were carried out at different conditions. The initial sorption rate constant (k(0)) and deactivation rate constant (k(d)) for SO(2)/NO sorptions were obtained from the nonlinear regression analysis of the experimental breakthrough data using deactivation kinetic model. Both the initial sorption rate constants and deactivation rate constants increased with increasing temperature, except at operating temperature of 170 °C. The activation energy and frequency factor for the SO(2) sorption were found to be 18.0 kJ/mol and 7.37 × 10(5)cm(3)/(g min), respectively. Whereas the activation energy and frequency factor for the NO sorption, were estimated to be 5.64 kJ/mol and 2.19 × 10(4)cm(3)/(g min), respectively. The deactivation kinetic model was found to give a very good agreement with the experimental data of the SO(2)/NO sorptions.
  6. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2009 Jan 15;161(1):570-4.
    PMID: 18462871 DOI: 10.1016/j.jhazmat.2008.03.097
    This paper examines the effectiveness of 10 additives toward improving SO2 sorption capacities (SSC) of rice husk ash (RHA)/lime (CaO) sorbent. The additives examined are NaOH, CaCl2, LiCl, NaHCO3, NaBr, BaCl2, KOH, K2HPO4, FeCl3 and MgCl2. Most of the additives tested increased the SSC of RHA/CaO sorbent, whereby NaOH gave highest SSC (30mg SO2/g sorbent) at optimum concentration (0.25mol/l) compared to other additives examined. The SSC of RHA/CaO sorbent prepared with NaOH addition was also increases from 17.2 to 39.5mg SO2/g sorbent as the water vapor increases from 0% RH to 80% RH. This is probably due to the fact that most of additives tested act as deliquescent material, and its existence increases the amount of water collected on the surface of the sorbent, which played an important role in the reaction between the dry-type sorbent and SO2. Although most of the additives were shown to have positive effect on the SSC of the RHA/CaO sorbent, some were found to have negative or insignificant effect. Thus, this study demonstrates that proper selection of additives can improve the SSC of RHA/CaO sorbent significantly.
  7. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    Environ Sci Technol, 2008 Mar 01;42(5):1499-504.
    PMID: 18441794
    The SO2 sorption capacity (SSC) of sorbents prepared from rice husk ash (RHA) with NaOH as additive was studied in a fixed-bed reactor. The sorbents were prepared using a water hydration method by slurrying RHA, CaO, and NaOH. Response surface methodology (RSM) based on four-variable central composite face centered design (CCFCD) was employed in the synthesis of the sorbents. The correlation between the sorbent SSC (as response) with four independent sorbent preparation variables, i.e. hydration period, RHA/CaO ratio, NaOH amount, and drying temperature, were presented as empirical mathematical models. Among all the variables studied, the amount of NaOH used was found to be the most significant variable affecting the SSC of the sorbents prepared. The SSC for sorbent prepared with the addition of NaOH was found to be significantly higher than sorbents prepared without NaOH. This is probably because NaOH is a deliquescent material, and its existence increases the amount of water collected on the surface of the sorbent, a condition required for sorbent-SO2 reaction to occur at low temperature. The effect of further treatment of RHA at 600 degrees C was also investigated. Although pretreated RHA sorbents demonstrated higher SSC as compared to untreated RHA sorbents, nevertheless, at optimum conditions, sorbents prepared from untreated RHA was found to be more favorable due to practical and economic concerns.
  8. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2009 Jul 30;166(2-3):1556-9.
    PMID: 19147280 DOI: 10.1016/j.jhazmat.2008.12.028
    In this work, the removal of SO(2) and NO from simulated flue gas from combustion process was investigated in a fixed-bed reactor using rice husk ash (RHA)/CaO-based sorbent. Various metal precursors were used in order to select the best metal impregnated over RHA/CaO sorbents. The results showed that RHA/CaO sorbents impregnated with CeO(2) had the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NO. Infrared spectroscopic results indicated the formation of both sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) species due to the catalytic role played by CeO(2). Apart from that, the catalytic activity of the RHA/CaO/CeO(2) sorbent was found to be closely related to its physical properties (specific surface area, total pore volume and average pore diameter).
  9. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    Environ Sci Technol, 2006 Oct 01;40(19):6032-7.
    PMID: 17051796
    Siliceous materials such as rice husk ash (RHA) have potential to be utilized as high performance sorbents for the flue gas desulfurization process in small-scale industrial boilers. This study presents findings on identifying the key factorfor high desulfurization activity in sorbents prepared from RHA. Initially, a systematic approach using central composite rotatable design was used to develop a mathematical model that correlates the sorbent preparation variables to the desulfurization activity of the sorbent. The sorbent preparation variables studied are hydration period, x1 (6-16 h), amount of RHA, x2 (5-15 g), amount of CaO, x3 (2-6 g), amount of water, x4 (90-110 mL), and hydration temperature, x5 (150-250 degrees C). The mathematical model developed was subjected to statistical tests and the model is adequate for predicting the SO2 desulfurization activity of the sorbent within the range of the sorbent preparation variables studied. Based on the model, the amount of RHA, amount of CaO, and hydration period used in the preparation step significantly influenced the desulfurization activity of the sorbent. The ratio of RHA and CaO used in the preparation mixture was also a significant factor that influenced the desulfurization activity of the sorbent. A RHA to CaO ratio of 2.5 leads to the formation of specific reactive species in the sorbent that are believed to be the key factor responsible for high desulfurization activity in the sorbent. Other physical properties of the sorbent such as pore size distribution and surface morphology were found to have insignificant influence on the desulfurization activity of the sorbent.
  10. Cheah TS, Sani RA, Chandrawathani P, Bahri S, Dahlan I
    Trop Anim Health Prod, 1999 Feb;31(1):25-31.
    PMID: 10399814
    An investigation into the epidemiology of Trypansoma evansi infection in crossbred dairy cattle was conducted for a period of 12 months on a dairy cattle farm in Penninsular Malaysia. The prevalence of parasitaemia was highest in lactating animals (13.4%), followed by those in the dry herd (8.8%), late pregnant animals (8.1%), early pregnant animals (4.7%), calves (0.3%) and heifers (0.2%). The prevalence of antigenaemia was highest in the lactating animals (54.7%), followed by that in dry animals (53.7%), heifers (51.1%), late pregnant animals (47.7%), early pregnant animals (46.5%) and calves (24.2%).
  11. Zwain HM, Aziz HA, Ng WJ, Dahlan I
    Environ Sci Pollut Res Int, 2017 May;24(14):13012-13024.
    PMID: 28378314 DOI: 10.1007/s11356-017-8804-0
    Recycled paper mill effluent (RPME) contains high levels of organic and solid compounds, causing operational problems for anaerobic biological treatment. In this study, a unique modified anaerobic inclining-baffled reactor (MAI-BR) has been developed to treat RPME at various initial chemical oxygen demand (COD) concentrations (1000-4000 mg/L) and hydraulic retention times (HRTs) (3 and 1 day). The COD removal efficiency was decreased from 96 to 83% when the organic loading rate (OLR) was increased from 0.33 to 4 g/L day. Throughout the study, a maximum methane yield of 0.25 L CH4/g COD was obtained, while the pH fluctuated in the range of 5.8 to 7.8. The reactor performance was influenced by the development and distribution of the microbial communities. Based on the next-generation sequencing (NGS) analysis, the microbial community represented a variety of bacterial phyla with significant homology to Euryarchaeota (43.06%), Planctomycetes (24.68%), Proteobacteria (21.58%), Acidobacteria (4.12%), Chloroflexi (3.14%), Firmicutes (1.12%), Bacteroidetes (1.02%), and others (1.28%). The NGS analysis showed that the microbial community was dominated by Methanosaeta concilii and Candidatus Kuenenia stuttgartiensis. This can be supported by the presence of filamentous and spherical microbes of different sizes. Additionally, methanogenic and anaerobic ammonium oxidation (ANAMMOX) microorganisms coexisted in all compartments, and these contributed to the overall degradation of substances in the RPME. Graphical abstract ᅟ.
  12. Dahlan I, Ahmad Z, Fadly M, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2010 Jun 15;178(1-3):249-57.
    PMID: 20137857 DOI: 10.1016/j.jhazmat.2010.01.070
    In this work, the application of response surface and neural network models in predicting and optimizing the preparation variables of RHA/CaO/CeO(2) sorbent towards SO(2)/NO sorption capacity was investigated. The sorbents were prepared according to central composite design (CCD) with four independent variables (i.e. hydration period, RHA/CaO ratio, CeO(2) loading and the use of RHA(raw) or pretreated RHA(600 degrees C) as the starting material). Among all the variables studied, the amount of CeO(2) loading had the largest effect. The response surface models developed from CCD was effective in providing a highly accurate prediction for SO(2) and NO sorption capacities within the range of the sorbent preparation variables studied. The prediction of CCD experiment was verified by neural network models which gave almost similar results to those determined by response surface models. The response surface models together with neural network models were then successfully used to locate and validate the optimum hydration process variables for maximizing the SO(2)/NO sorption capacities. Through this optimization process, it was found that maximum SO(2) and NO sorption capacities of 44.34 and 3.51 mg/g, respectively could be obtained by using RHA/CaO/CeO(2) sorbents prepared from RHA(raw) with hydration period of 12h, RHA/CaO ratio of 2.33 and CeO(2) loading of 8.95%.
  13. Zwain HM, Nile BK, Faris AM, Vakili M, Dahlan I
    Sci Rep, 2020 12 17;10(1):22209.
    PMID: 33335267 DOI: 10.1038/s41598-020-79395-8
    Odors due to the emission of hydrogen sulfide (H2S) have been a concern in the sewage treatment plants over the last decades. H2S fate and emissions from extended aeration activated sludge (EAAS) system in Muharram Aisha-sewage treatment plant (MA-STP) were studied using TOXCHEM model. Sensitivity analysis at different aeration flowrate, H2S loading rate, wastewater pH, wastewater temperature and wind speed were studied. The predicted data were validated against actual results, where all the data were validated within the limits, and the statistical evaluation of normalized mean square error (NMSE), geometric variance (VG), and correlation coefficient (R) were close to the ideal fit. The results showed that the major processes occurring in the system were degradation and emission. During summer (27 °C) and winter (12 °C), about 25 and 23%, 1 and 2%, 2 and 2%, and 72 and 73% were fated as emitted to air, discharged with effluent, sorbed to sludge, and biodegraded, respectively. At summer and winter, the total emitted concentrations of H2S were 6.403 and 5.614 ppm, respectively. The sensitivity results indicated that aeration flowrate, H2S loading rate and wastewater pH highly influenced the emission and degradation of H2S processes compared to wastewater temperature and wind speed. To conclude, TOXCHEM model successfully predicted the H2S fate and emissions in EAAS system.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links