Displaying all 3 publications

Abstract:
Sort:
  1. Than NN, Soe HHK, Palaniappan SK, Abas AB, De Franceschi L
    Cochrane Database Syst Rev, 2019 09 09;9:CD011358.
    PMID: 31498421 DOI: 10.1002/14651858.CD011358.pub3
    BACKGROUND: Sickle cell disease is an autosomal recessive inherited haemoglobinopathy which causes painful vaso-occlusive crises due to sickle red blood cell dehydration. Vaso-occlusive crises are common painful events responsible for a variety of clinical complications; overall mortality is increased and life expectancy decreased compared to the general population. Experimental studies suggest that intravenous magnesium has proven to be well-tolerated in individuals hospitalised for the immediate relief of acute (sudden onset) painful crisis and has the potential to decrease the length of hospital stay. Some in vitro studies and open studies of long-term oral magnesium showed promising effect on pain relief but failed to show its efficacy. The studies show that oral magnesium therapy may prevent sickle red blood cell dehydration and prevent recurrent painful episodes. There is a need to access evidence for the impact of oral and intravenous magnesium effect on frequency of pain, length of hospital stay and quality of life. This is an updated version of the review.

    OBJECTIVES: To evaluate the effects of short-term intravenous magnesium on the length of hospital stay and quality of life in children and adults with sickle cell disease. To determine the effects of long-term oral magnesium therapy on the frequency of painful crises and the quality of life in children and adults with sickle cell disease.

    SEARCH METHODS: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books.Date of last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register: 03 February 2019.Date of last search of other resources (clinical trials registries): 04 April 2019.

    SELECTION CRITERIA: We searched for published and unpublished randomized controlled studies of oral or intravenous magnesium compared to placebo or no magnesium.

    DATA COLLECTION AND ANALYSIS: Authors independently assessed the study quality and extracted the data using standard Cochrane methodologies.

    MAIN RESULTS: We included five randomized placebo-controlled studies with a total of 386 participants (aged three to 53 years). Of these, two shorter parallel studies (n = 306) compared intravenous magnesium sulphate to placebo (normal saline) for admission to hospital due to a vaso-occlusive crisis, for which we were able to analyse data. The quality of evidence was moderate for studies in this comparison, mainly due to limitations due to risk of bias and imprecision. Two of the three longer-term studies comparing oral magnesium pidolate to placebo had a cross-over design. The third was a parallel factorial study which compared hydroxyurea and oral magnesium to each other and to placebo over a longer period of time; we only present the comparison of oral magnesium to placebo from this study. The quality of evidence was very low with uncertainty of the estimation.The eight-hourly dose levels in the two studies of intravenous magnesium were different; one used 100 mg/kg while the second used 40 mg/kg. Only one of these studies (n = 104) reported the mean daily pain score while hospitalised (a non-significant difference between groups, moderate quality evidence). The second study (n = 202) reported a number of child- and parent-reported quality of life scores. None of the scores showed any difference between treatment groups (low quality evidence). Data from one study (n = 106) showed no difference in length of stay in hospital between groups (low quality evidence). Both studies reported on adverse events, but not defined by severity as we had planned. One study showed significantly more participants receiving intravenous magnesium experienced warmth at infusion site compared to placebo; there were no differences between groups for other adverse events (low quality evidence).Three studies (n = 80) compared oral magnesium pidolate to placebo. None of them reported data which we were able to analyse. One study (n = 24) reported on the number of painful days and stated there was no difference between two groups (low quality evidence). None of the studies reported on quality of life or length of hospital stay. Two studies (n = 68) reported there were no differences in levels of magnesium in either plasma or red blood cells (moderate quality evidence). Two studies (n = 56) reported adverse events. One reported episodes of mild diarrhoea and headache, all of which resolved without stopping treatment. The second study reported adverse events as gastrointestinal disorders, headache or migraine, upper respiratory infections and rash; which were all evenly distributed across treatment groups (moderate quality evidence).

    AUTHORS' CONCLUSIONS: Moderate to low quality evidence showed neither intravenous magnesium and oral magnesium therapy has an effect on reducing painful crisis, length of hospital stay and changing quality of life in treating sickle cell disease. Therefore, no definitive conclusions can be made regarding its clinical benefit. Further randomized controlled studies, perhaps multicentre, are necessary to establish whether intravenous and oral magnesium therapies have any effect on improving the health of people with sickle cell disease.

  2. Than NN, Soe HHK, Palaniappan SK, Abas AB, De Franceschi L
    Cochrane Database Syst Rev, 2017 Apr 14;4:CD011358.
    PMID: 28409830 DOI: 10.1002/14651858.CD011358.pub2
    BACKGROUND: Sickle cell disease is an autosomal recessive inherited haemoglobinopathy which causes painful vaso-occlusive crises due to sickle red blood cell dehydration. Vaso-occlusive crises are common painful events responsible for a variety of clinical complications; overall mortality is increased and life expectancy decreased compared to the general population. Experimental studies suggest that intravenous magnesium has proven to be well-tolerated in individuals hospitalised for the immediate relief of acute (sudden onset) painful crisis and has the potential to decrease the length of hospital stay. Some in vitro studies and open studies of long-term oral magnesium showed promising effect on pain relief but failed to show its efficacy. The studies show that oral magnesium therapy may prevent sickle red blood cell dehydration and prevent recurrent painful episodes. There is a need to access evidence for the impact of oral and intravenous magnesium effect on frequency of pain, length of hospital stay and quality of life.

    OBJECTIVES: To evaluate the effects of short-term intravenous magnesium on the length of hospital stay and quality of life in children and adults with sickle cell disease. To determine the effects of long-term oral magnesium therapy on the frequency of painful crises and the quality of life in children and adults with sickle cell disease.

    SEARCH METHODS: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books.Date of last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register: 01 December 2016.Date of last search of other resources (clinical trials registries): 29 March 2017.

    SELECTION CRITERIA: We searched for published and unpublished randomized controlled studies of oral or intravenous magnesium compared to placebo or no magnesium.

    DATA COLLECTION AND ANALYSIS: Authors independently assessed the study quality and extracted the data using standard Cochrane methodologies.

    MAIN RESULTS: We included five randomized placebo-controlled studies with a total of 386 participants (aged three to 53 years). Two shorter parallel studies (n = 306) compared intravenous magnesium sulphate to placebo (normal saline) for admission to hospital due to a vaso-occlusive crisis, for which we were able to analyse data. The quality of evidence was moderate for studies presenting this comparison mainly due to limitations due to risk of bias and imprecision. Two of the three longer-term studies comparing oral magnesium pidolate to placebo had a cross-over design. The third was a parallel factorial study which compared hydroxyurea and oral magnesium to each other and to placebo over a longer period of time; we only present the comparison of oral magnesium to placebo from this study. The quality of evidence was very low with uncertainty of the estimation.The eight-hourly dose levels in the two studies of intravenous magnesium were different; one used 100 mg/kg while the second used 40 mg/kg. Only one of these studies (n = 104) reported the mean daily pain score while hospitalised (a non-significant difference between groups, moderate quality evidence). The second study (n = 202) reported a number of child- and parent-reported quality of life scores. None of the scores showed any difference between treatment groups (low quality evidence). Data from one study (n = 106) showed no difference in length of stay in hospital between groups (low quality evidence). Both studies reported on adverse events, but not defined by severity as we had planned. One study showed significantly more participants receiving intravenous magnesium experienced warmth at infusion site compared to placebo; there were no differences between groups for other adverse events (low quality evidence).Three studies (n = 80) compared oral magnesium pidolate to placebo. None of them reported data which we were able to analyse. One study (n = 24) reported on the number of painful days and stated there was no difference between two groups (low quality evidence). None of the studies reported on quality of life or length of hospital stay. Two studies (n = 68) reported there were no differences in levels of magnesium in either plasma or red blood cells (moderate quality evidence). Two studies (n = 56) reported adverse events. One reported episodes of mild diarrhoea and headache, all of which resolved without stopping treatment. The second study reported adverse events as gastrointestinal disorders, headache or migraine, upper respiratory infections and rash; which were all evenly distributed across treatment groups (moderate quality evidence).

    AUTHORS' CONCLUSIONS: Moderate to low quality evidence showed neither intravenous magnesium and oral magnesium therapy has an effect on reducing painful crisis, length of hospital stay and changing quality of life in treating sickle cell disease. Therefore, no definitive conclusions can be made regarding its clinical benefit. Further randomized controlled studies, perhaps multicentre, are necessary to establish whether intravenous and oral magnesium therapies have any effect on improving the health of people with sickle cell disease.

  3. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links