Displaying publications 1 - 20 of 284 in total

Abstract:
Sort:
  1. Dua K
    Pharm Nanotechnol, 2017 Aug 07.
    PMID: 28786352 DOI: 10.2174/2211738505666170808095258
    BACKGROUND: Respiratory tract being a non-invasive route of drug administration is gaining massive attention in the present time to achieve both local and the systemic effects. In order to achieve effective therapeutic effects of a drug in the pulmonary region, it requires challenging barriers like mucociliary clearance and uptake by macrophages. An effective drug delivery system delivers the therapeutically active moieties at the right time, rate and in a reproducible manner to target sites for the effectively the human illnesses. A major limitation associated with most of the currently available conventional and controlled release drug delivery devices is that not all the drug candidates are well absorbed uniformly locally or systemically.

    METHODS: We searched for the chitosan and its derivatives based nanocarrier systems for the pulmonary drug delivery. We focused on the applications of chitosan in the development of nanoparticles for the pulmonary drug delivery.

    RESULTS: Chitosan, a natural linear bio poly amino saccharide is playing a crucial role in the development of novel drug delivery systems (NDDS) such as nanoparticles in order to treat various respiratory diseases effectively by managing these difficulties due to its unique characteristic properties of biodegradability, biocompatibility, mucoadhesivity and its ability to enhance macromolecule permeation. It also aids in providing sustained and targeted effects, which are the primary requirements of an ideal pulmonary drug delivery system. This review highlights the applications and importance of chitosan with special emphasis on nanotechnology, particularly employed in various respiratory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), lung cancer and pulmonary fibrosis.

    CONCLUSIONS: This review will be of interest to both the biological and formulation scientists to have a quick snapshot on the utility of chitosan in pulmonary drug delivery systems. At present, there are no patented chitosan based controlled release products available with pulmonary drug delivery and therefore this area needs attention to explore the potential of this polymer in the area of respiratory research.

  2. Gorajana A, Kit WW, Dua K
    Recent Pat Drug Deliv Formul, 2015;9(2):167-82.
    PMID: 25714525
    OBJECTIVE: Norfloxacin has a low aqueous solubility which leads to poor dissolution. Keeping this fact in mind the purpose of the present study is to formulate and evaluate norfloxacin solid dispersion.

    METHODS: Solid dispersions were prepared using hydrophilic carriers like polyethylene glycol (PEG) 4000, polyvinylpyrrolidone (PVP) k30 and carbopol 974pNF (CP) in various ratios using solvent evaporation technique. These formulations were evaluated using solubility studies, dissolution studies; Fourier transmitted infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetery (DSC). The influence of polymer type and drug to polymer ratio on the solubility and dissolution rate of norfloxacin was also evaluated.

    RESULTS: FTIR analysis showed no interaction of all three polymers with norfloxacin. The results from XRD and DSC analyses of the solid dispersion preparations showed that norfloxacin existsin its amorphous form. Among the Norfloxacin: PEG solid dispersions, Norfloxacin: PEG 1:14 ratio showed the highest dissolution rate at pH 6.8. For norfloxacin: PVP solid dispersions, norfloxacin: PVP 1:10 ratio showed the highest dissolution rate at pH 6.8. For Norfloxacin: CP solid dispersions, norfloxacin: P 1:2 ratio showed the highest dissolution rate at pH 6.8.

    CONCLUSION: The solid dispersion of norfloxacin with polyethylene glycol (PEG) 4000, polyvinylpyrrolidone (PVP) k30 and carbopol 974p NF (CP), lends an ample credence for better therapeutic efficacy.

  3. Madan JR, Khude PA, Dua K
    Int J Pharm Investig, 2014 Apr;4(2):60-4.
    PMID: 25006550 DOI: 10.4103/2230-973X.133047
    Solid lipid nanoparticles (SLNs) are the new generation of submicron sized lipid emulsions where liquid lipid (oil) has been substituted by solid lipid. Lipids used in the formulation are safe, stable and biodegradable in nature. SLNs offer various advantages for topical drug delivery like ability of deposition into skin with the reduced systemic exposure and reduced local side-effects along with providing sustained release of drug. Mometasone furoate (MF) is a topical glucocorticoid having anti-inflammatory, anti-pruritic, anti-hyper proliferative activity. Owing to these properties it is recommended in chronic inflammation and psoriasis. In market, MF cream and lotion (0.1%) are available, which show slight skin irritation, burning and common side-effects due to steroids.
  4. Pabreja K, Dua K, Padi SS
    Curr Drug Deliv, 2010 Oct;7(4):324-8.
    PMID: 20695843
    The systemic use of non-steroidal anti-inflammatory drugs (NSAIDs) which act by inhibiting cyclooxygenase (COX) is severely hampered by gastric and peptic ulcers. The topical delivery of NSAIDs has the advantages of avoiding gastric and peptic ulcers and delivering the drug to the inflammation site. Importance of aceclofenac as a new generational NSAID has inspired the development of topical dosage forms. This mode of administration may help to avoid typical side effects of NSAIDs associated with oral and systemic administration such as gastric irritation, particularly diarrhoea, nausea, abdominal pain and flatulence. The aim of this study was to formulate topical gel containing 1% of aceclofenac in carbopol and PEG base and to evaluate it for analgesic and antiinflammatory activity using carrageenan-induced thermal hyperalgesia and paw oedema in rats. Carrageenan administration into the hind paw produced a significant inflammation associated with hyperalgesia as shown by decreased rat paw withdrawal latency in response to a thermal stimulus (47+/-0.5 degrees C) 4 h after carrageenan injection. Topical application of AF1 significantly attenuated the development of hypersensitivity to thermal stimulus as compared to control (P<0.05) and other formulation treated groups (P<0.05). All the AF semisolid formulations, when applied topically 2 h before carrageenan administration, inhibited paw edema in a timedependent manner with maximum percent edema inhibition of 80.33+/-2.52 achieved with AF1 after 5 h of carrageenan administration However, topical application of AF2 markedly prevented the development of edema as compared to other formulation (AF2 and AF3) treated groups (P<0.05). Among all the semisolid formulations, Carbopol gel base was found to be most suitable dermatological base for aceclofenac.
  5. Dua K, Pabreja K, Ramana MV
    Acta Pharm, 2010 Dec;60(4):467-78.
    PMID: 21169138 DOI: 10.2478/v1007-010-0036-5
    Aceclofenac is a new generation non-steroidal anti-inflammatory drug showing effective anti-inflammatory and analgesic properties. It is available in the form of tablets of 100 mg. Importance of aceclofenac as a NSAID has inspired development of topical dosage forms. This mode of administration may help avoid typical side effects associated with oral administration of NSAIDs, which have led to its withdrawal. Furthermore, aceclofenac topical dosage forms can be used as a supplement to oral therapy for better treatment of conditions such as arthritis. Ointments, creams, and gels containing 1% (m/m) aceclofenac have been prepared. They were tested for physical appearance, pH, spreadability, extrudability, drug content uniformity, in vitro diffusion and in vitro permeation. Gels prepared using Carbopol 940 (AF2, AF3) and macrogol bases (AF7) were selected after the analysis of the results. They were evaluated for acute skin irritancy, anti-inflammatory and analgesic effects using the carrageenan-induced thermal hyperalgesia and paw edema method. AF2 was shown to be significantly (p < 0.05) more effective in inhibiting hyperalgesia associated with inflammation, compared to AF3 and AF7. Hence, AF2 may be suggested as an alternative to oral preparations.
  6. Madan JR, Pawar KT, Dua K
    Int J Pharm Investig, 2015 Apr-Jun;5(2):114-20.
    PMID: 25838997 DOI: 10.4103/2230-973X.153390
    Low aqueous solubility is a major problem faced during formulation development of new drug molecules. Lurasidone HCl (LRD) is an antipsychotic agent specially used in the treatments of schizophrenia and is a good example of the problems associated with low aqueous solubility. Lurasidone is practically insoluble in water, has poor bioavailability and slow onset of action and therefore cannot be given in emergency clinical situations like schizophrenia. Hence, purpose of this research was to provide a fast dissolving oral dosage form of Lurasidone. This dosage form can provide quick onset of action by using the concept of mixed hydrotropy. Initially, solubility of LRD was determined individually in nicotinamide, sodium citrate, urea and sodium benzoate at concentration of 10, 20, 30 and 40% w/v solutions using purified water as a solvent. Highest solubility was obtained in 40% sodium benzoate solution. In order to decrease the individual hydrotrope concentration mixed hydrotropic agents were used. Highest solubility was obtained in 15:20:5 ratio of Nicotinamide + sodium benzoate + sodium citrate. This optimized combination was utilized in the preparation of solid dispersions by using distilled water as a solvent. Solid dispersions were evaluated for X-ray diffraction, differential scanning calorimetry and Fourier-transform infrared to show no drug-hydrotropes interaction has occurred. This solid dispersion was compressed to form fast dissolving tablets. Dissolution studies of prepared tablets were done using USP Type II apparatus. The batch L3 tablets show 88% cumulative drug release within 14 min and in vitro dispersion time was 32 min. It was concluded that the concept of mixed hydrotropic solid dispersion is novel, safe and cost-effective technique for enhancing the bioavailability of poorly water-soluble drugs. The miraculous enhancement in solubility and bioavailability of Lurasidone is clear indication of the potential of mixed hydrotropy to be used in future for other poorly water-soluble drugs in which low bioavailability is a major concern.
  7. Gupta G, Singh Y, Chellappan D, Dua K
    J Cosmet Dermatol, 2020 Sep;19(9):2447-2448.
    PMID: 32365277 DOI: 10.1111/jocd.13466
  8. Dua K, Chakravarthi S, Kumar D, Sheshala R, Gupta G
    Int J Pharm Investig, 2013 Oct;3(4):183-7.
    PMID: 24350037 DOI: 10.4103/2230-973X.121287
    In an attempt for better treatment of bacterial infections and burn wounds, semisolid formulations containing norfloxacin (NF) and natural wound healing agent Curcuma longa were prepared. The rationale behind employing combination of NF and Curcuma longa is to obtain synergistic wound healing effect. The prepared formulations were compared with silver sulfadiazine cream 1%, USP.
  9. Sheshala R, Ying LT, Hui LS, Barua A, Dua K
    PMID: 23746224
    In order to achieve better treatment for local wounds and bacterial infections, topical formulations containing Cocos nucifera Linn. were developed. These formulations were evaluated for their physicochemical properties and antimicrobial efficacy against various strains of microorganisms. Semisolid formulations containing 5% w/w of Cocos nucifera Linn. were prepared by employing different dermatological bases and were evaluated for their physical appearance, pH, rheological properties, FTIR-spectroscopic analysis, thermodynamic stability and stability studies. The antimicrobial activity of each prepared formulation was determined using disk-diffusion method against various strains of microorganisms. All the prepared formulations were found to be stable and exhibited suitable physicochemical characteristics including pH, viscosity and spreadability which are necessary for an ideal topical preparation, in addition to strong antimicrobial activity. Carbopol gel base was found to be the most suitable dermatological base for Cocos nucifera Linn. in comparsion to other bases. Cocos nucifera Linn. formulations showed great potential for wounds and local bacterial infections. Moreover, carbopol gel base with its aesthetic appeal was found to be a suitable dermatological base for Cocos nucifera Linn. semisolid formulation as it had demonstrated significant physicochemical properties and greater diffusion when assessed using disk- diffusion method.
  10. Pabreja K, Dua K, Sharma S, Padi SS, Kulkarni SK
    Eur J Pharmacol, 2011 Jul 1;661(1-3):15-21.
    PMID: 21536024 DOI: 10.1016/j.ejphar.2011.04.014
    Painful neuropathy, a common complication of diabetes mellitus is characterized by allodynia and hyperalgesia. Recent studies emphasized on the role of non-neuronal cells, particularly microglia in the development of neuronal hypersensitivity. The purpose of the present study is to evaluate the effect of minocyline, a selective inhibitor of microglial activation to define the role of neuroimmune activation in experimental diabetic neuropathy. Cold allodynia and thermal and chemical hyperalgesia were assessed and the markers of inflammation and oxidative and nitrosative stress were estimated in streptozotocin-induced diabetic rats. Chronic administration of minocycline (40 and 80 mg/kg, i.p.) for 2 weeks started 2 weeks after diabetes induction attenuated the development of diabetic neuropathy as compared to diabetic control animals. In addition, minocyline treatment reduced the levels of interleukin-1β and tumor necrosis factor-α, lipid peroxidation, nitrite and also improved antioxidant defense in spinal cords of diabetic rats as compared to diabetic control animals. In contrast, minocycline (80 mg/kg, per se) had no effect on any of these behavioral and biochemical parameters assessed in age-matched control animals. The results of the present study strongly suggest that activated microglia are involved in the development of experimental diabetic neuropathy and minocycline exerted its effect probably by inhibition of neuroimmune activation of microglia. In addition, the beneficial effects of minocycline are partly mediated by its anti-inflammatory effect by reducing the levels of proinflammatory cytokines and in part by modulating oxidative and nitrosative stress in the spinal cord that might be involved in attenuating the development of behavioral hypersensitivity in diabetic rats.
  11. Dua K, Pabreja K, Ramana MV, Lather V
    J Pharm Bioallied Sci, 2011 Jul;3(3):417-25.
    PMID: 21966164 DOI: 10.4103/0975-7406.84457
    The objective of the present investigation was to study the effect of β-cyclodextrin (β-CD) on the in vitro dissolution of aceclofenac (AF) from molecular inclusion complexes. Aceclofenac molecular inclusion complexes in 1:1 and 1:2 M ratio were prepared using a kneading method. The in vitro dissolution of pure drug, physical mixtures, and cyclodextrin inclusion complexes was carried out. Molecular inclusion complexes of AF with β-CD showed a considerable increase in the dissolution rate in comparison with the physical mixture and pure drug in 0.1 N HCl, pH 1.2, and phosphate buffer, pH 7.4. Inclusion complexes with a 1:2 M ratio showed the maximum dissolution rate in comparison to other ratios. Fourier transform infrared spectroscopy and differential scanning calorimetry studies indicated no interaction between AF and β-CD in complexes in solid state. Molecular modeling results indicated the relative energetic stability of the β-CD dimer-AF complex as compared to β-CD monomer-AF. Dissolution enhancement was attributed to the formation of water soluble inclusion complexes with β-CD. The in vitro release from all the formulations was best described by first-order kinetics (R(2) = 0.9826 and 0.9938 in 0.1 N HCl and phosphate buffer, respectively) followed by the Higuchi release model (R(2) = 0.9542 and 0.9686 in 0.1 N HCl and phosphate buffer, respectively). In conclusion, the dissolution of AF can be enhanced by the use of a hydrophilic carrier like β-CD.
  12. Dua K, Sheshala R, Ling TY, Hui Ling S, Gorajana A
    PMID: 23286236
    At present, approximately 25%of drugs in modern pharmacopoeia are derived from plant sources (phytomedicines) that can be developed for the treatment of diseases and disorders. Many other drugs are synthetic analogues built on the prototype compounds isolated from plants. Cocos nucifera Linn. (Arecaceae), which is commonly known as coconut, is a plant possessing a lot of potential as an ingredient in traditional medicines for the treatment of metabolic disorders and particularly as an anti-inflammatory, antimicrobial and analgesic agent. This review emphasizes on the recent literature and research findings that highlight the significant biological activities of C. nucifera Linn. such as its anti-inflammatory, antimicrobial and analgesic properties. This review can help researchers keen on exploiting the therapeutic potential of C. nucifera Linn. which may motivate them to further explore their commercial viability.
  13. Satija S, Mehta M, Gupta G, Chellappan DK, Dua K
    Future Med Chem, 2020 10;12(20):1805-1807.
    PMID: 33016120 DOI: 10.4155/fmc-2020-0190
  14. Gulati N, Chellappan DK, MacLoughlin R, Dua K, Dureja H
    Life Sci, 2021 Nov 15;285:119969.
    PMID: 34547339 DOI: 10.1016/j.lfs.2021.119969
    Inflammatory lung diseases related morbidity and mortality impose a significant financial burden. Inflammation is a hallmark of many diseases of the respiratory system which is directly or indirectly linked to adverse health conditions, air pollution, rapid lifestyle changes, and regular outbreaks of microbial infections. The unique anatomical and physiological features of the lungs make them an ideal target organ in the treatment of inflammatory respiratory disease and with the help of inhaled therapy lungs can be targeted directly. The principal objective of this review is to present the comprehensive role of inhaled nano-based therapeutics such as liposomes, niosomes, nanoparticles, nanoemulsion, nanosuspension, and exosomes in the treatment and management of inflammatory respiratory diseases. Inhaled nanomedicines provide targeted diagnosis and treatment, improved drug solubility and distribution, prevent first-pass hepatic metabolism, improved patient compliance, and reduced drug side effects. They overcome several biological barriers in the human body and provide immediate, and quick-onset of action. Future research should be focused on improving the therapeutic efficiency of inhaled nanocarriers and to carry out in-depth mechanistic studies to translate current scientific knowledge for the efficient management of inflammatory lung diseases with minimal or no toxicity.
  15. Madhu A, Gupta G, Arali B, Chellappan DK, Dua K
    Recent Pat Drug Deliv Formul, 2017;11(1):36-41.
    PMID: 27993107 DOI: 10.2174/1872211310666161216111515
    AIMS AND BACKGROUND: Psychosis is a neurological disorder, which is usually defined as the &quot;loss of contact with reality.&quot; As medicine 'Hemidesmusindicus' holds a reputed place in all systems of medicine in India. It is given in the form of infusion, fine particles, or syrup. It is also a component of several medicinal preparations. The present research work is pertaining to find out an anti-psychotic activity of an aqueous root extract of Hemidesmusindicus- a time bound study in rats.

    METHODS: In the present study, the dried roots of Hemidesmusindicus were crushed to a coarse powder and extracted with water under reflux for 36 hours to obtain the aqueous extract of roots of Hemidesmusindicus (AERHI). The extract was reconstituted in 2% aqueous tragacanth just before use and administered orally at a dose 0f 100 mg/kg, 300 mg/kg and 500 mg/kg. In a single dose study, the parameters were assessed after oral administration of the single dose of the AERHI, whereas in a multiple dose study, the animals daily received the suitable oral dose of the AERHI for a period of 30 days. The parameters were assessed on the 15th and 30th day. The antipsychotic activity was screened using Apomorphine induced Stereotyped behavior in rats and Haloperidol induced catalepsy models were used. In Apomorphine induced Stereotyped behavior inhibition of the Stereotyped behavior was considered to be anti-psychotic activity and in Haloperidol induced catalepsy, we observed whether the AERHI potentate or attenuate the catalepsy in rats.

    RESULTS: In this study, the extract of Hemidesmusindicus significantly inhibited the stereotyped behavior induced by apomorphine in rats and also potentiate the catalepsy induced by haloperidol, thereby showing its anti-psychotic activity.

    CONCLUSION: All these observations imply that Hemidesmusindicus extract possesses anti-psychotic activity in experimental animals.

  16. Bisht D, Kumar D, Kumar D, Dua K, Chellappan DK
    Arch Pharm Res, 2021 May;44(5):439-474.
    PMID: 33893998 DOI: 10.1007/s12272-021-01328-4
    Artemisia and its allied species have been employed for conventional medicine in the Northern temperate regions of North America, Europe, and Asia for the treatments of digestive problems, morning sickness, irregular menstrual cycle, typhoid, epilepsy, renal problems, bronchitis malaria, etc. The multidisciplinary use of artemisia species has various other health benefits that are related to its traditional and modern pharmaceutical perspectives. The main objective of this review is to evaluate the traditional, modern, biological as well as pharmacological use of the essential oil and herbal extracts of Artemisia nilagirica, Artemisia parviflora, and other allied species of Artemisia. It also discusses the botanical circulation and its phytochemical constituents viz disaccharides, polysaccharides, glycosides, saponins, terpenoids, flavonoids, and carotenoids. The plants have different biological importance like antiparasitic, antimalarial, antihyperlipidemic, antiasthmatic, antiepileptic, antitubercular, antihypertensive, antidiabetic, anxiolytic, antiemetic, antidepressant, anticancer, hepatoprotective, gastroprotective, insecticidal, antiviral activities, and also against COVID-19. Toxicological studies showed that the plants at a low dose and short duration are non or low-toxic. In contrast, a high dose at 3 g/kg and for a longer duration can cause toxicity like rapid respiration, neurotoxicity, reproductive toxicity, etc. However, further in-depth studies are needed to determine the medicinal uses, clinical efficacy and safety are crucial next steps.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links