Displaying all 14 publications

Abstract:
Sort:
  1. Elias MH, Azlan H, Sulong S, Baba AA, Ankathil R
    Cancer Rep (Hoboken), 2018 08;1(2):e1111.
    PMID: 32721103 DOI: 10.1002/cnr2.1111
    BACKGROUND: Imatinib mesylate is a molecularly targeted tyrosine kinase inhibitor drug. It is effectively used in the treatment of chronic myeloid leukemia (CML) patients. However, development of resistance to imatinib mesylate as a result of BCR-ABL dependent and BCR-ABL independent mechanisms has emerged as a daunting problem in the management of CML patients. Between these mechanisms, BCR-ABL independent mechanisms are still not robustly understood.

    AIM: To investigate the correlation of HOXA4 and HOXA5 promoter DNA hypermethylation with imatinib resistance among CML patients.

    METHODS AND RESULTS: Samples from 175 Philadelphia positive CML patients (83 good response and 92 BCR-ABL non-mutated imatinib resistant patients) were subjected to Methylation Specific High Resolution Melt Analysis for methylation levels quantification of the HOXA4 and HOXA5 promoter regions. Receiver operating characteristic curve analysis was done to elucidate the optimal methylation cut-off point followed by multiple logistic regression analysis. Log-Rank analysis was done to measure the overall survival difference between CML groups. The optimal methylation cut-off point was found to be at 62.5% for both HOXA4 and HOXA5. Chronic myeloid leukemia patients with ≥63% HOXA4 and HOXA5 methylation level were shown to have 3.78 and 3.95 times the odds, respectively, to acquire resistance to imatinib. However, overall survival of CML patients that have ≤62% and ≥ 63% methylation levels of HOXA4 and HOXA5 genes were found to be not significant (P-value = 0.126 for HOXA4; P-value = 0.217 for HOXA5).

    CONCLUSION: Hypermethylation of the HOXA4 and HOXA5 promoter is correlated with imatinib resistance and with further investigation, it could be a potential epigenetic biomarker in supplement to the BCR-ABL gene mutation in predicting imatinib treatment response among CML patients but could not be considered as a prognostic marker.

  2. Elias MH, Azlan H, Baba AA, Ankathil R
    PMID: 29669505 DOI: 10.2174/1871529X18666180419101416
    BACKGROUND: In exploring the cause of Imatinib Mesylate (IM) resistance among Chronic Myeloid Leukemia (CML) patients who do not harbor BCR-ABL dependent mechanism, BCR-ABL independent pathways are the most probable pathways that should be explored. In BCR-ABL independent pathway, SOCS1 plays an important role as it helps in regulating optimal JAK/STAT activity.

    OBJECTIVE: To identify the association of SOCS1 gene hypermethylation in mediating IM Resistance.

    METHOD: The SOCS1 promoter methylation level of 92 BCR-ABL non mutated IM resistant CML patients, 83 IM good response CML patients and 5 normal samples from healthy individuals were measured using Methylation Specific-High Resolution Melt (MS-HRM) analysis.

    RESULTS: Both primers used to amplify promoter region from -333 to -223 and from -332 to -188 showed less than 10% methylation in all CML and normal samples. Consequently, there was no significant difference in SOCS1 promoter methylation level between IM resistant and IM good response patients.

    CONCLUSION: SOCS1 promoter methylation level is not suitable to be used as one of the biomarkers for predicting the possibility of acquiring resistance among CML patients treated with IM.

  3. Elias MH, Ankathil R, Salmi AR, Sudhikaran W, Limprasert P, Zilfalil BA
    Genet Test Mol Biomarkers, 2011 Jun;15(6):387-93.
    PMID: 21329465 DOI: 10.1089/gtmb.2010.0191
    Fragile X Syndrome (FXS) is the most common form of inherited mental retardation in men. It is caused by abnormalities in the FMR1 gene that are associated with CGG repeat expansion and the hypermethylation status of its promoter. Methylated alleles lead to transcriptional inhibition and consequent loss of Fragile X Mental Retardation Protein. Chemical modification of cytosine to uracil by bisulfite treatment has proved to be an attractive method for DNA methylation studies that precludes labor-intensive Southern blot analysis, which is the gold standard test for FXS. In this report, bisulfite-treated DNA samples were amplified using real-time multiplex methylation-specific polymerase chain reaction followed by melting curve analysis. Our results show that all control samples with known CGG repeat numbers and methylation statuses were correctly diagnosed. The samples from 43 male patients were also successfully diagnosed, which were in complete agreement with the results of Southern blotting. By such means, 39 patients were found to have an unmethylated allele; 3, a fully mutated allele; and 1, both methylated and unmethylated alleles, thus implying a diagnosis of mosaicism. In conclusion, we find our method to be convenient for screening a large number of male patients with FXS, because it is rapid and easy to perform, especially when there is a low quantity of DNA that must be sensitively and accurately assayed.
  4. Yap E, Tumian NR, Azma RZ, Sharifah NA, Salwati S, Hamidah NH, et al.
    Malays J Pathol, 2017 Aug;39(2):107-113.
    PMID: 28866691 MyJurnal
    Clinical resistance to imatinib (IM) in chronic myeloid leukemia (CML) carries adverse consequences. We investigated 22 CML patients who developed IM-resistance for BCR-ABL kinase domain (KD) mutations. The median follow-up for this study was 101.9 months (range: 22.2 to 176.5 months) and the estimated mean overall survival was 150.87 months (95% CI: 130.0 to 171.0). Five out of 22 patients tested positive for BCR-ABL KD mutations: 2 had T315I, 2 had E255K and 1 had V289F mutations. Of the remaining 17 patients who did not harbor BCR-ABL KD mutations, 11 patients received nilotinib while the rest continued on IM. All 17 achieved haematological remission but only 5 patients achieved complete cytogenetic remission, 4 of whom did so after switching to nilotinib. Our study shows that most of our IM-resistant patients do not test positive for BCR-ABL KD mutations by available testing methods and the role of second generation tyrosine kinase inhibitors remains undetermined. A critical analysis of the BCR-ABL KD mutations and the underlying mechanisms/ pathways of BCR-ABL independent IM-resistance along with potential treatments in the horizon will be discussed.
  5. Munawar WASWA, Elias MH, Addnan FH, Hassandarvish P, AbuBakar S, Roslan N
    BMC Infect Dis, 2024 Jan 23;24(1):124.
    PMID: 38263024 DOI: 10.1186/s12879-024-08983-0
    BACKGROUND: The Coronavirus disease 2019 (COVID-19) pandemic occurred due to the dispersion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Severe symptoms can be observed in COVID-19 patients with lipid-related comorbidities such as obesity and diabetes. Yet, the extensive molecular mechanisms of how SARS-CoV-2 causes dysregulation of lipid metabolism remain unknown.

    METHODS: Here, an advanced search of articles was conducted using PubMed, Scopus, EBSCOhost, and Web of Science databases using terms from Medical Subject Heading (MeSH) like SARS-CoV-2, lipid metabolism and transcriptomic as the keywords. From 428 retrieved studies, only clinical studies using next-generation sequencing as a gene expression method in COVID-19 patients were accepted. Study design, study population, sample type, the method for gene expression and differentially expressed genes (DEGs) were extracted from the five included studies. The DEGs obtained from the studies were pooled and analyzed using the bioinformatics software package, DAVID, to determine the enriched pathways. The DEGs involved in lipid metabolic pathways were selected and further analyzed using STRING and Cytoscape through visualization by protein-protein interaction (PPI) network complex.

    RESULTS: The analysis identified nine remarkable clusters from the PPI complex, where cluster 1 showed the highest molecular interaction score. Three potential candidate genes (PPARG, IFITM3 and APOBEC3G) were pointed out from the integrated bioinformatics analysis in this systematic review and were chosen due to their significant role in regulating lipid metabolism. These candidate genes were significantly involved in enriched lipid metabolic pathways, mainly in regulating lipid homeostasis affecting the pathogenicity of SARS-CoV-2, specifically in mechanisms of viral entry and viral replication in COVID-19 patients.

    CONCLUSIONS: Taken together, our findings in this systematic review highlight the affected lipid-metabolic pathways along with the affected genes upon SARS-CoV-2 invasion, which could be a potential target for new therapeutic strategies study in the future.

  6. Elias MH, Baba AA, Azlan H, Rosline H, Sim GA, Padmini M, et al.
    Leuk. Res., 2014 Apr;38(4):454-9.
    PMID: 24456693 DOI: 10.1016/j.leukres.2013.12.025
    Discovery of imatinib mesylate (IM) as the targeted BCR-ABL protein tyrosine kinase inhibitor (TKI) has resulted in its use as the frontline therapy for chronic myeloid leukemia (CML) across the world. Although high response rates are observed in CML patients who receive IM treatment, a significant number of patients develop resistance to IM. Resistance to IM in patients has been associated with a heterogeneous array of mechanisms of which point mutations within the ABL tyrosine kinase domain (TKD) are the frequently documented. The types and frequencies of mutations reported in different population studies have shown wide variability. We screened 125 Malaysian CML patients on IM therapy who showed either TKI refractory or resistance to IM to investigate the frequency and pattern of BCR-ABL kinase domain mutations among Malaysian CML patients undergoing IM therapy and to determine the clinical significance. Mutational screening using denaturing high performance liquid chromatography (dHPLC) followed by DNA sequencing was performed on 125 IM resistant Malaysian CML patients. Mutations were detected in 28 patients (22.4%). Fifteen different types of mutations (T315I, E255K, G250E, M351T, F359C, G251E, Y253H, V289F, E355G, N368S, L387M, H369R, A397P, E355A, D276G), including 2 novel mutations were identified, with T315I as the predominant type of mutation. The data generated from clinical and molecular parameters studied were correlated with the survival of CML patients. Patients with Y253H, M351T and E355G TKD mutations showed poorer prognosis compared to those without mutation. Interestingly, when the prognostic impact of the observed mutations was compared inter-individually, E355G and Y253H mutations were associated with more adverse prognosis and shorter survival (P=0.025 and 0.005 respectively) than T315I mutation. Results suggest that apart from those mutations occurring in the three crucial regions (catalytic domain, P-loop and activation-loop), other rare mutations also may have high impact in the development of resistance and adverse prognosis. Presence of mutations in different regions of BCR-ABL TKD leads to different levels of resistance and early detection of emerging mutant clones may help in decision making for alternative treatment. Serial monitoring of BCR-ABL1 transcripts in CML patients allows appropriate selection of CML patients for BCR-ABL1 KD mutation analysis associated with acquired TKI resistance. Identification of these KD mutations is essential in order to direct alternative treatments in such CML patients.
  7. Elias MH, Baba AA, Husin A, Sulong S, Hassan R, Sim GA, et al.
    Biomed Res Int, 2013;2013:129715.
    PMID: 23484077 DOI: 10.1155/2013/129715
    Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients has emerged as a significant clinical problem. The observation that increased epigenetic silencing of potential tumor suppressor genes correlates with disease progression in some CML patients treated with IM suggests a relationship between epigenetic silencing and resistance development. We hypothesize that promoter hypermethylation of HOXA4 could be an epigenetic mechanism mediating IM resistance in CML patients. Thus a study was undertaken to investigate the promoter hypermethylation status of HOXA4 in CML patients on IM treatment and to determine its role in mediating resistance to IM. Genomic DNA was extracted from peripheral blood samples of 95 CML patients (38 good responders and 57 resistant) and 12 normal controls. All samples were bisulfite treated and analysed by methylation-specific high-resolution melt analysis. Compared to the good responders, the HOXA4 hypermethylation level was significantly higher (P = 0.002) in IM-resistant CML patients. On comparing the risk, HOXA4 hypermethylation was associated with a higher risk for IM resistance (OR 4.658; 95% CI, 1.673-12.971; P = 0.003). Thus, it is reasonable to suggest that promoter hypermethylation of HOXA4 gene could be an epigenetic mechanism mediating IM resistance in CML patients.
  8. Elias MH, Baba AA, Husin A, Abdullah AD, Hassan R, Sim GA, et al.
    Hematol Rep, 2012 Nov 19;4(4):e23.
    PMID: 23355941 DOI: 10.4081/hr.2012.e23
    Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients is mediated by different mechanisms that can be classified as BCR-ABL dependent or BCR-ABL independent pathways. BCR-ABL dependent mechanisms are most frequently associated with point mutations in tyrosine kinase domain (TKD) of BCR-ABL1 and also with BCR-ABL gene amplification. Many different types and frequencies of mutations have been reported in different studies, probably due to the different composition of study cohorts. Since no reports are available from Malaysia, this study was undertaken to investigate the frequency and pattern of BCR-ABL kinase domain mutations using dHPLC followed by sequencing, and also status of BCR-ABL gene amplification using fluorescence in situ hybridization (FISH) on 40 IM resistant Malaysian CML patients. Mutations were detected in 13 patients (32.5%). Five different types of mutations (T315I, E255K, Y253H, M351T, V289F) were identified in these patients. In the remaining 27 IM resistant CML patients, we investigated the contribution made by BCR-ABL gene amplification, but none of these patients showed amplification. It is presumed that the mechanisms of resistance in these 27 patients might be due to BCR-ABL independent pathways. Different mutations confer different levels of resistance and, therefore, detection and characterization of TKD mutations is highly important in order to guide therapy in CML patients.
  9. Rahman FA, Naidu J, Ngiu CS, Yaakob Y, Mohamed Z, Othman H, et al.
    Asian Pac J Cancer Prev, 2016;17(8):4037-41.
    PMID: 27644658
    BACKGROUND: Hepatocellular carcinoma (HCC) is a common cancer that is frequently diagnosed at an advanced stage. Transarterial chemoembolisation (TACE) is an effective palliative treatment for patients who are not eligible for curative treatment. The two main methods for performing TACE are conventional (c-TACE) or with drug eluting beads (DEB-TACE). We sought to compare survival rates and tumour response between patients undergoing c-TACE and DEB-TACE at our centre.

    MATERIALS AND METHODS: A retrospective cohort study of patients undergoing either treatment was carried out from January 2009 to December 2014. Tumour response to the procedures was evaluated according to the modified Response Evaluation Criteria in Solid Tumors (mRECIST). Kaplan-Meier analysis was used to assess and compare the overall survival in the two groups.

    RESULTS: A total of 79 patients were analysed (34 had c-TACE, 45 had DEB-TACE) with a median follow-up of 11.8 months. A total of 20 patients in the c-TACE group (80%) and 12 patients in the DEB-TACE group (44%) died during the follow up period. The median survival durations in the c-TACE and DEB-TACE groups were 4.9 ± 3.2 months and 8.3 ± 2.0 months respectively (p=0.008). There was no statistically significant difference noted among the two groups with respect to mRECIST criteria.

    CONCLUSIONS: DEB-TACE demonstrated a significant improvement in overall survival rates for patients with unresectable HCC when compared to c-TACE. It is a safe and promising approach and should potentially be considered as a standard of care in the management of unresectable HCC.

  10. Qatrun Nada D, Masniza ML, Abdullah N, Marlini M, Elias MH, Pathmanathan SG, et al.
    Malays J Pathol, 2022 Dec;44(3):367-385.
    PMID: 36591707
    Breast cancer remains a significant cause of mortality in females worldwide, despite advances in technology and treatment. MicroRNA expression in breast cancer is studied both as potential biomarkers and for therapeutic purposes. Accumulated evidence revealed microRNA profile of various types of cancer cells following antineoplastic treatment. The progression of research in this area provides better understanding on the anti-cancer mechanism of various natural compounds and drugs specifically on the microRNA regulation. Hence, we aim to systematically review differentially expressed microRNA in MCF-7, a commonly studied breast cancer cell line, after treatment with anti-neoplastic agents. Relevant keywords were used to screen for research articles that reported on the differentially expressed microRNAs in experimental models of MCF-7 before and after anti-neoplastic treatment. Target genes of microRNAs were identified from MiRTarbase and further in silico functional analysis of the target genes were performed using DAVID bioinformatic resources. Two upregulated microRNAs (mir-200c and let-7d) and 3 downregulated microRNAs (mir-27a, mir-27b and mir-203) were identified by highest number of studies. Three microRNAs (let-7a, mir-23a and mir-7) showed inconsistent direction of expression. Genes functional analysis revealed the regulatory effect of microRNA on genes related to angiogenesis, hypoxia, P53, FoxO and PI3K-AKT signalling. Clusters of genes associated to the pathway of angiogenesis, cancers, cell proliferation and apoptosis were noted through protein-protein interaction analysis. MicroRNAs, especially the mir-200c, let-7d, mir-27a, mir-27b and mir-203 from this review could be further validated experimentally to serve as molecular target or biomarkers for anti-neoplastic therapy.
  11. Ahmad MF, Elias MH, Mat Jin N, Abu MA, Syafruddin SE, Zainuddin AA, et al.
    Front Endocrinol (Lausanne), 2023;14:1192180.
    PMID: 37455921 DOI: 10.3389/fendo.2023.1192180
    In vitro oocyte maturation (IVM) has been used worldwide. Despite the long-term implementation, the uptake of this procedure to complement current in vitro fertilization (IVF) remains low. The main reason is likely due to the non-synchronization of protocol and definition criteria, leading to difficulty in collective proper outcome data worldwide and, thus, lack of understanding of the exact IVM procedure. The review aims to consolidate the current clinical practice of IVM by dissecting relevant publications to be tailored for a current spectrum of clinical practice. Nevertheless, the background theories of oocyte maturation were also explored to provide a comprehensive understanding of the basis of IVM theories. Additional discussion of other potential uses of IVM in the future, such as in ovarian tissue cryopreservation known as OTO-IVM for fertility preservation and among women with diminished ovarian reserve, was also explored. Otherwise, future collaboration among all IVM centers is paramount for better collection of clinical data to provide valid recommendations for IVM in clinical practice, especially in molecular integrity and possible DNA alteration if present for IVM offspring outcome safety purposes.
  12. Lazim N, Elias MH, Sutaji Z, Abdul Karim AK, Abu MA, Ugusman A, et al.
    Int J Mol Sci, 2023 Aug 17;24(16).
    PMID: 37629050 DOI: 10.3390/ijms241612869
    The homeobox A10 (HOXA10) gene is known to be related to endometriosis; however, due to a lack of knowledge/evidence in the pathogenesis of endometriosis, the mechanisms that link HOXA10 to endometriosis still need to be clarified. This review addresses the difference in the expression of the HOXA10 gene in endometriotic women versus non-endometriotic women across populations by country and discusses its influences on women's fertility. An organized search of electronic databases was conducted in Scopus, ScienceDirect, PubMed, and Web of Science. The keywords used were (HOXA10 OR "homeobox A10" OR PL OR HOX1 OR HOX1H OR HOX1.8) AND ("gene expression") AND (endometriosis). The initial search resulted in 623 articles, 10 of which were included in this review. All ten papers included in this study were rated fair in terms of the quality of the studies conducted. The expression of the HOXA10 gene was found to be downregulated in most studies. However, one study provided evidence of the downregulation and upregulation of HOXA10 gene expression due to the localization of endometriotic lesions. Measuring the expression of the HOXA10 gene in women is clinically essential to predicting endometriosis, endometrial receptivity, and the development of pinopodes in the endometrium during the luteal phase.
  13. Faizal AM, Elias MH, Jin NM, Abu MA, Syafruddin SE, Zainuddin AA, et al.
    Front Endocrinol (Lausanne), 2024;15:1274376.
    PMID: 38524634 DOI: 10.3389/fendo.2024.1274376
    The leading indicator for successful outcomes in in-vitro fertilization (IVF) is the quality of gametes in oocytes and sperm. Thus, advanced research aims to highlight the parameter in assessing these qualities - DNA fragmentation in sperm and oocyte development capacity (ODC) via evaluation of microenvironments involving its maturation process. Regarding oocytes, most evidence reveals the role of cumulus cells as non-invasive methods in assessing their development competency, mainly via gene expression evaluation. Our review aims to consolidate the evidence of GDF-9 derivatives, the HAS2, GREM1, and PTGS2 gene expression in cumulus cells used as ODC markers in relevant publications and tailored to current IVF outcomes. In addition to that, we also added the bioinformatic analysis in our review to strengthen the evidence aiming for a better understanding of the pathways and cluster of the genes of interest - HAS2, GREM1, and PTGS2 in cumulus cell level. Otherwise, the current non-invasive method can be used in exploring various causes of infertility that may affect these gene expressions at the cumulus cell level. Nevertheless, this method can also be used in assessing the ODC in various cohorts of women or as an improvement of markers following targeted tools or procedures by evaluating the advancement of these gene expressions following the targeted intervention.
  14. Loong TH, Soon NC, Nik Mahmud NRK, Naidu J, Rani RA, Abdul Hamid N, et al.
    Biomed Rep, 2017 Nov;7(5):460-468.
    PMID: 29181158 DOI: 10.3892/br.2017.985
    There is a lack of non-invasive screening modalities to diagnose chronic atrophic gastritis (CAG) and intestinal metaplasia (IM). Thus, the aim of the present study was to determine the sensitivity and specificity of serum pepsinogen I (PGI), PGI:II, the PGI:II ratio and gastrin-17 (G-17) in diagnosing CAG and IM, and the correlations between these serum biomarkers and pre-malignant gastric lesions. A cross-sectional study of 72 patients (82% of the calculated sample size) who underwent oesophageal-gastro-duodenoscopy for dyspepsia was performed in the present study. The mean age of the participants was 56.2±16.2 years. Serum PGI:I, PGI:II, G-17 and Helicobacter pylori antibody levels were measured by enzyme-linked immunosorbent assay. Median levels of PGI:I, PGI:II, the PGI:II ratio and G-17 for were 129.9 µg/l, 10.3 µg/l, 14.7 and 4.4 pmol/l, respectively. Subjects with corpus CAG/IM exhibited a significantly lower PGI:II ratio (7.2) compared with the control group (15.7; P<0.001). Histological CAG and IM correlated well with the serum PGI:II ratio (r=-0.417; P<0.001). The cut-off value of the PGI:II ratio of ≤10.0 demonstrated high sensitivity (83.3%), specificity (77.9%) and area under the receiver operating characteristic curve of 0.902 in detecting the two conditions. However, the sensitivity was particularly low at a ratio of ≤3.0. The serum PGI:II ratio is a sensitive and specific marker to diagnose corpus CAG/IM, but at a high cut-off value. This ratio may potentially be used as an outpatient, non-invasive biomarker for detecting corpus CAG/IM.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links