Displaying publications 1 - 20 of 137 in total

Abstract:
Sort:
  1. Fakurazi S, Hairuszah I, Nanthini U
    Food Chem Toxicol, 2008 Aug;46(8):2611-5.
    PMID: 18514995 DOI: 10.1016/j.fct.2008.04.018
    Initiation of acetaminophen (APAP) toxicities is believed to be promoted by oxidative stress during the event of overdosage. The aim of the present study was to evaluate the hepatoprotective action of Moringa oleifera Lam (MO), an Asian plant of high medicinal value, against a single high dose of APAP. Groups of five male Sprague-Dawley rats were pre-administered with MO (200 and 800 mg/kg) prior to a single dose of APAP (3g/kg body weight; p.o). Silymarin was used as an established hepatoprotective drug against APAP induced liver injury. The hepatoprotective activity of MO extract was observed following significant histopathological analysis and reduction of the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in groups pretreated with MO compared to those treated with APAP alone. Meanwhile, the level of glutathione (GSH) was found to be restored in MO-treated animals compared to the groups treated with APAP alone. These observations were comparable to the group pretreated with silymarin prior to APAP administration. Group that was treated with APAP alone exhibited high level of transaminases and ALP activities besides reduction in the GSH level. The histological hepatocellular deterioration was also evidenced. The results from the present study suggested that the leaves of MO can prevent hepatic injuries from APAP induced through preventing the decline of glutathione level.
  2. Uma N, Fakurazi S, Hairuszah I
    Malays J Nutr, 2010 Aug;16(2):293-307.
    PMID: 22691934 MyJurnal
    This study investigated the role of antioxidant enzyme system following crude hydroethanolic extract of Moringa oleifera leaves (MO) in acute paracetamol (PCM) induced hepatotoxicity. Hydroethanolic extract (80%) of MO (200 mg/kg and 800 mg/kg; p.o) was pre-administered before a single oral dose of 3 g/kg PCM intoxication to male Sprague-Dawley rats. Pre-treatment of the extract was found to have reduced lipid peroxidation level when compared to the group treated with PCM only. The level of glutathione peroxidase (GPx), glutathione-Stransferase (GST) and glutathione reductase (GR) was restored to near normal in groups that were pre-treated with MO. Histopathological studies have further confirmed the hepatoprotective activity of MO compared to group treated with PCM only. The results obtained were comparable to silymarin (200 mg/kg; p.o). The MO extract was found to have significantly protected the liver against toxicity following PCM intoxication by enhancing the level of antioxidant enzyme activity.
  3. Moorthy M, Fakurazi S, Ithnin H
    Pak J Biol Sci, 2008 Aug 01;11(15):1901-8.
    PMID: 18983031
    This study was conducted to identify and to compare the mitochondrial morphological alterations in livers of rats treated with various doses of diclofenac and ibuprofen. Hundred and forty-four male Sprague Dawley rats were dosed with 3, 5 and 10 mg kg(-1) diclofenac and ibuprofen in saline via intraperitoneal injection for 15 days. The control group was administered with saline in a similar manner. Four rats were euthanised every 3 days until day 15. While 200 mg kg(-1) diclofenac and ibuprofen-treated rats (n = 4) were euthanized 10 h posttreatment. The livers were removed, cleaned and a section across the right lobe was taken and fixed in 4% (v/v) glutaraldehyde for electron microscopy analysis and the remaining samples were kept at -80 degrees C for Western blot analysis. Five milligram per kilogram and 10 mg kg(-1) diclofenac-administered rats for 15 days revealed the presence of enlarged mitochondria, irregular and ruptured mitochondrial membranes. While rats administered with 10 mg kg(-1) ibuprofen also showed the presence of mitochondria with irregular membrane structure and ruptured membranes. Western blotting analysis of mitochondrial fractions revealed the expression of cytochrome c in all samples and complete absence of cytochrome c expression in the cytosolic fraction of all samples after day 15. Analysis in 200 mg kg(-1) diclofenac and ibuprofen-treated groups, revealed expression of cytochrome c in both mitochondrial and cytosolic fractions. This observation indicates that both diclofenac and ibuprofen may alter the morphology of mitochondria, leading to cytochrome c release into the cytosol. Further studies needs to be conducted to investigate on the activity of the mitochondria following both treatments.
  4. Fakurazi S, Sharifudin SA, Arulselvan P
    Molecules, 2012 Jul 10;17(7):8334-50.
    PMID: 22781444 DOI: 10.3390/molecules17078334
    The aim of the study was to investigate the in vitro antioxidant properties Moringa oleifera Lam. (MO) extracts and its curative role in acetaminophen (APAP)-induced toxic liver injury in rats caused by oxidative damage. The total phenolic content and antioxidant properties of hydroethanolic extracts of different MO edible parts were investigated by employing an established in vitro biological assay. In the antihepatotoxic study, either flowers or leaves extract (200 mg/kg or 400 mg/kg, i.p) were administered an hour after APAP administration, respectively. N-Acetylcysteine was used as the positive control against APAP-induced hepatotoxicity. The levels of liver markers such as alanine aminotransferase (ALT) and the levels of oxidative damage markers including malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) protein adduct, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analysed and compared between experimental groups. Among MO edible parts the flower extracts contain the highest total phenolic content and antioxidant capacity, followed by leaves extract. The oxidative marker MDA, as well as 4-HNE protein adduct levels were elevated and GSH, SOD and CAT were significantly decreased in groups treated with hepatotoxin. The biochemical liver tissue oxidative markers measured in the rats treated with MO flowers and leaves hydroethanolic extracts showed a significant (p < 0.05) reduction in the severity of the liver damage. The results of this study strongly indicate the therapeutic properties of MO hydroethanolic extracts against acute liver injury and thereby scientifically support its traditional use.
  5. Shahruzaman SH, Mustafa MF, Ramli S, Maniam S, Fakurazi S, Maniam S
    BMC Complement Altern Med, 2019 Aug 19;19(1):220.
    PMID: 31426778 DOI: 10.1186/s12906-019-2628-z
    BACKGROUND: Baeckea frutescens (B. frutescens) of the family Myrtaceae is a plant that has been used in traditional medicine. It is known to have antibacterial, antipyretic and cytoprotective properties. The objective of this study is to explore the mechanism of B. frutescens leaves extracts in eliminating breast cancer cells.

    METHOD: B. frutescens leaves extracts were prepared using Soxhlet apparatus with solvents of different polarity. The selective cytotoxicity of these extracts at various concentrations (20 to 160 μg/ml) were tested using cell viability assay after 24, 48 and 72 h of treatment. The IC50 value in human breast cancer (MCF-7 and MDA-MB-231) and mammary breast (MCF10A) cell lines were determined. Apoptotic study using AO/PI double staining was performed using fluorescent microscope. The glucose uptake was measured using 2-NBDG, a fluorescent glucose analogue. The phytochemical screening was performed for alkaloids, flavonoids, tannins, triterpenoids, and phenols.

    RESULTS: B. frutescens leaves extracts showed IC50 value ranging from 10 -127μg/ml in MCF-7 cells after 72 h of treatment. Hexane extract had the lowest IC50 value (10μg/ml), indicating its potent selective cytotoxic activity. Morphology of MCF-7 cells after treatment with B. frutescens extracts exhibited evidence of apoptosis that included membrane blebbing and chromatin condensation. In the glucose uptake assay, B. frutescens extracts suppressed glucose uptake in cancer cells as early as 24 h upon treatment. The inhibition was significantly lower compared to the positive control WZB117 at their respective IC50 value after 72 h incubation. It was also shown that the glucose inhibition is selective towards cancer cells compared to normal cells. The phytochemical analysis of the extract using hexane as the solvent in particular gave similar quantities of tannin, triterpenoids, flavonoid and phenols. Presumably, these metabolites have a synergistic effect in the in vitro testing, producing the potent IC50 value and subsequently cell death.

    CONCLUSION: This study reports the potent selective cytotoxic effect of B. frutescens leaves hexane extract against MCF-7 cancer cells. B. frutescens extracts selectively suppressed cancer cells glucose uptake and subsequently induced cancer cell death. These findings suggest a new role of B. frutescens in cancer cell metabolism.

  6. Shahruzaman SH, Fakurazi S, Maniam S
    Cancer Manag Res, 2018;10:2325-2335.
    PMID: 30104901 DOI: 10.2147/CMAR.S167424
    Adaptive metabolic responses toward a low oxygen environment are essential to maintain rapid proliferation and are relevant for tumorigenesis. Reprogramming of core metabolism in tumors confers a selective growth advantage such as the ability to evade apoptosis and/or enhance cell proliferation and promotes tumor growth and progression. One of the mechanisms that contributes to tumor growth is the impairment of cancer cell metabolism. In this review, we outline the small-molecule inhibitors identified over the past decade in targeting cancer cell metabolism and the usage of some of these molecules in clinical trials.
  7. Shahruzaman SH, Yusof FZ, Maniam S, Fakurazi S, Maniam S
    BMC Complement Med Ther, 2021 Oct 01;21(1):245.
    PMID: 34598696 DOI: 10.1186/s12906-021-03417-9
    BACKGROUND: Adaptive metabolic response towards a low oxygen environment is essential to maintain rapid tumour proliferation and progression. The vascular network that surrounds the tumour develops an intermittent hypoxic condition and stimulates hypoxia-inducing factors. Baeckea frutescens is used in traditional medicine and known to possess antibacterial and cytoprotective properties. In this study, the cytotoxic effect of B. frutescens leaves and branches extracts against hypoxic human breast cancer (MCF-7) was investigated.

    METHOD: The extracts were prepared using Soxhlet apparatus for ethanol and hexane extracts while the water extracts were freeze-dried. In vitro cytotoxic activities of B. frutescens extracts of various concentrations (20 to 160 μg/mL) at 24, 48, and 72 hours time points were studied using MTT in chemically induced hypoxic condition and in 3-dimensional in vitro cell culture system. An initial characterisation of B. frutescens extracts was carried out using Fourier-transform Infrared- Attenuated Total Reflection (FTIR-ATR) to determine the presence of functional groups.

    RESULTS: All leaf extracts except for water showed IC50 values ranging from 23 -158 μg/mL. Hexane extract showed the lowest IC50 value (23 μg/mL), indicating its potent cytotoxic activity. Among the branch extracts, only the 70% ethanolic extract (B70) showed an IC50 value. The hexane leaf extract tested on 3- dimensional cultured cells showed an IC50 value of 17.2 μg/mL. The FTIR-ATR spectroscopy analysis identified various characteristic peak values with different functional groups such as alcohol, alkenes, alkynes, carbonyl, aromatic rings, ethers, ester, and carboxylic acids. Interestingly, the FTIR-ATR spectra report a complex and unique profile of the hexane extract, which warrants further investigation.

    CONCLUSION: Adaptation of tumour cells to hypoxia significantly contributes to the aggressiveness and chemoresistance of different tumours. The identification of B. frutescens and its possible role in eliminating breast cancer cells in hypoxic conditions defines a new role of natural product that can be utilised as an effective agent that regulates metabolic reprogramming in breast cancer.

  8. Shahruzaman SH, Mustafa MF, Ramli S, Maniam S, Fakurazi S, Maniam S
    PMID: 31178918 DOI: 10.1155/2019/9607590
    Breast cancer is the leading cause of cancer death in women in over 100 countries worldwide and accounts for almost 1 in 4 cancer cases among women. Baeckea frutescens of the family Myrtaceae has been used in traditional medicine and is known to possess antibacterial, antipyretic, and cytoprotective properties. In this study, we investigated the role of Baeckea frutescens branches extracts against human breast cancer cells. Baeckea frutescens branches extracts were prepared using Soxhlet apparatus with solvents of different polarity. The selective cytotoxic activity and the glucose consumption rate of Baeckea frutescens branches extracts of various concentrations (20 to 160 ug/ml) at 24-, 48-, and 72-hour time points were studied using MTT and glucose uptake assay. The IC50 values in human breast cancer (MCF-7 and MDA-MB-231) and mammary breast (MCF10A) cell lines were determined. Apoptotic study using AO/PI double staining was performed using fluorescent microscopy. The glucose uptake was measured using 2-NBDG, a fluorescent glucose analogue. The phytochemical screening of major secondary metabolites in plants was performed. This study reports that Baeckea frutescens branches extracts showed potent selective cytotoxic activity against MCF-7 cells compared to MDA-MB-231 cells after 72 hours of treatment. Evidence of early apoptosis which includes membrane blebbing and chromatin condensation was observed after 72 hours of treatment with Baeckea frutescens branches extracts. Interestingly, for the glucose uptake assay, the inhibition was observed as early as 24 hours upon treatment. All Baeckea frutescens extracts showed the presence of major secondary metabolites such as tannin, triterpenoid, flavonoid, and phenol. However, alkaloid level was unable to be determined. The identification of Baeckea frutescens and its possible role in selectively inhibiting glucose consumption in breast cancer cells defines a new role of natural product that can be utilised as an effective agent that regulates metabolic reprogramming in breast cancer.
  9. Tan JM, Foo JB, Fakurazi S, Hussein MZ
    Beilstein J Nanotechnol, 2015;6:243-53.
    PMID: 25671168 DOI: 10.3762/bjnano.6.23
    This work explores the potential use of commercially obtained, carboxylated, single-walled carbon nanotubes (SWCNT-COOH) as nanocarriers for the antiparkinson drug, levodopa (LD). The resulting nanohybrid was characterized using materials characterization methods including Fourier transform infrared spectroscopy, Raman spectroscopy, elemental analysis, UV-vis spectroscopy and scanning electron microscopy. The results showed that SWCNT-COOH were able to form supramolecular complexes with LD via a π-π stacking interaction and exhibited favourable, slow, sustained-release characteristics as a drug carrier with a release period over more than 20 h. The results obtained from the drug release studies of LD at different pH values showed that the LD-loaded nanohybrid is pH activated. The release kinetics of LD from SWCNT-COOH were well-described by a pseudo-second-order kinetic model. A cytotoxicity assay of the synthesized nanohybrid was also carried out in PC12 cell lines (a widely used, in vitro Parkinson's model for neurotoxicity studies) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in order to investigate their possible effects on normal neuronal cells in vitro. It was found that the synthesized nanohybrid did not compromise the cell viability and the PC12 cells remained stable throughout the experiments up to 72 h after treatment.
  10. Syarina PN, Karthivashan G, Abas F, Arulselvan P, Fakurazi S
    EXCLI J, 2015;14:385-93.
    PMID: 27004048 DOI: 10.17179/excli2014-697
    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients.
  11. Tan JM, Karthivashan G, Arulselvan P, Fakurazi S, Hussein MZ
    Drug Des Devel Ther, 2014;8:2333-43.
    PMID: 25429205 DOI: 10.2147/DDDT.S70650
    Among the array of nanomaterials, carbon nanotubes have shown great potential as drug carriers in the field of nanomedicine, owing to their attractive physicochemical structure, which facilitates functionalization of therapeutic molecules onto their external walls or being encapsulated inside the tubes. The aim of this preliminary study was to formulate betulinic acid (BA), a poorly water-soluble drug, in oxidized multiwalled carbon nanotubes (MWCNT-COOH) for enhanced delivery efficiency into cancer cells with reduced cytotoxicity. The synthesized MWCNT-BA nanocomposite was characterized using ultraviolet-visible, Fourier transform infrared, thermogravimetric analysis, powder X-ray diffraction, and field emission scanning electron microscopy techniques. The loading of BA in MWCNT-COOH nanocarrier was estimated to be about 14.5%-14.8% (w/w), as determined by ultraviolet-visible and thermogravimetric analysis. Fourier transform infrared study shows that the peaks of the resulting MWCNT-BA nanocomposite correlate to the characteristic functional groups of BA and MWCNT-COOH. The powder X-ray diffraction results confirmed that the tubular structures of MWCNT-COOH were not affected by the drug loading mechanism of BA. The release profiles demonstrated that approximately 98% of BA could be released within 22 hours by phosphate-buffered saline solution at pH 7.4 compared with about 22% within 24 hours at pH 4.8. The biocompatibility studies revealed that MWCNT-BA at concentrations <50μg/mL expressed no cytotoxicity effects for mouse embryo fibroblast cells after 72 hours of treatment. The anticancer activity of MWCNT-BA was observed to be more sensitive to human lung cancer cell line when compared with human liver cancer cell line, with half maximal inhibitory concentration values of 2.7 and 11.0μg/mL, respectively. Our findings form a fundamental platform for further investigation of the MWCNT-BA formulation against different types of cancer cells.
  12. Kura AU, Hussein MZ, Fakurazi S, Arulselvan P
    Chem Cent J, 2014;8(1):47.
    PMID: 25177361 DOI: 10.1186/s13065-014-0047-2
    The production of layered double hydroxide(LDH) nanocomposite as an alternative drug delivery system against various ailments is on the increase. Their toxicity potential is usually dose and time dependent with particle sizes, shapes and surface charge playing some role both in the in vitro and in vivo studies. The reticular endothelial system of especially the liver and spleen were shown to sequestrate most of these nanocomposite, especially those with sizes greater than 50 nm. The intracellular drug delivery by these particles is mainly via endocytotic pathways aided by the surface charges in most cases. However, structural modification of these nanocomposite via coating using different types of material may lower the toxicity where present. More importantly, the coating may serve as targeting ligand hence, directing drug distribution and leading to proper drug delivery to specific area of need; it equally decreases the unwanted nanocomposite accumulation in especially the liver and spleen. These nanocomposite have the advantage of wider bio-distribution irrespective of route of administration, excellent targeted delivery potential with ease of synthetic modification including coating.
  13. Kura AU, Hussein-Al-Ali SH, Hussein MZ, Fakurazi S
    ScientificWorldJournal, 2014;2014:104246.
    PMID: 24782658 DOI: 10.1155/2014/104246
    We incorporated anti-Parkinsonian drug, levodopa (dopa), in Zn/Al-LDH by coprecipitation method to form dopa-LDH nanocomposite. Further coating of Tween-80 on the external surfaces of dopa-LDH nanocomposite was achieved through the oxygen of C=O group of Tween-80 with the layer of dopa-LDH nanocomposite. The final product is called Tween-dopa-LDH nanocomposite. The X-ray diffraction indicates that the Tween-dopa-LDH nanocomposite was formed by aggregation structure. From the TGA data, the Tween-80 loading on the surface of LDH and dopa-LDH was 8.6 and 7.4%, respectively. The effect of coating process on the dopa release from Tween-dopa-LDH nanocomposite was also studied. The release from Tween-dopa-LDH nanocomposite shows slower release compared to the release of the drug from dopa-LDH nanocomposite as done previously in our study, presumably due to the retarding shielding effect. The cell viability study using PC12 showed improved viability with Tween-80 coating on dopa-LDH nanocomposite as studied by mitochondrial dehydrogenase activity (MTT assay).
  14. Barahuie F, Hussein MZ, Fakurazi S, Zainal Z
    Int J Mol Sci, 2014;15(5):7750-86.
    PMID: 24802876 DOI: 10.3390/ijms15057750
    Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life.
  15. Sellamuthu PS, Arulselvan P, Fakurazi S, Kandasamy M
    Pak J Pharm Sci, 2014 Jan;27(1):161-7.
    PMID: 24374436
    Salacia chinensis L. is a traditional Southeast Asian herbal medicine and used in the treatment of diabetes. To investigate the antidiabetic properties of mangiferin from Salacia chinensis and its beneficial effect on toxicological and hematological parameters in streptozotocin induced diabetic rats. Mangiferin was orally treated with the dose of 40 mg/kg body weight/day for 30 days to diabetic rats. Biochemical (blood glucose, uric acid, urea and creatinine), toxicological (AST, ALT and ALP) and hematological parameters (red and white blood cells) and their functional indices were evaluated in diabetic treated groups with mangiferin and glibenclamide. Mangiferin treated diabetic rats significantly (p<0.05) lowered the level of blood glucose, in addition, altered the levels of biochemical parameters including urea, uric acid, and creatinine. Toxicological parameters including AST, ALT and ALP were also significantly reduced after treatment with mangiferin in diabetic rats. Similarly, the levels of red blood, white blood cells and their functional indices were significantly improved through the administration of mangiferin. Thus, our results indicate that mangiferin present in S. chinensis possesses antidiabetic properties and nontoxic nature against chemically induced diabetic rats. Further experimental investigations are warrant to make use of its relevant therapeutic effect to substantiate its ethno-medicinal usage.
  16. Karthivashan G, Tangestani Fard M, Arulselvan P, Abas F, Fakurazi S
    J Food Sci, 2013 Sep;78(9):C1368-75.
    PMID: 24024688 DOI: 10.1111/1750-3841.12233
    Free radicals trigger chain reaction and inflict damage to the cells and its components, which in turn ultimately interrupts their biological activities. To prevent free radical damage, together with an endogenous antioxidant system, an exogenous supply of antioxidant components to the body in the form of functional food or nutritional diet helps undeniably. Research conducted by the Natl. Inst. of Health claimed that Moringa oleifera Lam possess the highest antioxidant content among various natural food sources based on an oxygen radical absorbent capacity assay. In this study, a 90% (ethanol:distilled water--90:10) gradient solvent was identified as one of the best gradient solvents for the effectual extraction of bioactive components from M. oleifera leaves. This finding was confirmed by various antioxidant assays, including radical scavenging activity (that is, 1, 1-diphenyl-2-picrylhydrazyl, H(2)O(2), and NO radical scavenging assay) and total antioxidant capacity (that is, ferric reducing antioxidant power and molybdenum assay). High-performance liquid chromatography (HPLC) fingerprints of the 90% gradient extract visually showed few specific peaks, which on further analysis, using HPLC-DAD-ESI-MS, were identified as flavonoids and their derivatives. Despite commonly reported flavonoids, that is, kaempferol and quercetin, we report here for the 1st time the presence of multiflorin-B and apigenin in M. oleifera leaves. These findings might help researchers to further scrutinize this high activity exhibiting gradient extract and its bio-active candidates for fruitful clinical/translational investigations.
  17. Apryani E, Hidayat MT, Moklas MA, Fakurazi S, Idayu NF
    J Ethnopharmacol, 2010 Jun 16;129(3):357-60.
    PMID: 20371280 DOI: 10.1016/j.jep.2010.03.036
    AIM OF THE STUDY: Mitragyna speciosa Korth from Rubiaceae family is a tropical plant indigenous to Southeast Asia particularly in Thailand, Peninsular of Malaysia and Indonesia. The leaves have been used by natives for their opium-like effect and cocaine-like stimulant ability to combat fatigue and enhance tolerance to hard work. However there is no scientific information about the effect of mitragynine on the cognitive performances. This study is designed to examine the working memory effects of mitragynine which is extracted from Mitragyna speciosa mature leaves.

    MATERIALS AND METHODS: The cognitive effect was studied using object location task and the motor activity in open-field test. Mitragynine 5, 10 and 15 mg/kg and were administered by intraperitoneal (IP) for 28 consecutive days and evaluated on day 28 after the last dose treatment. Scopolamine was used as the control positive drug.

    RESULTS: In this study there is prominent effects on horizontal locomotor activity was observed. Mitragynine significantly reduced locomotor activity in open-field test compared with vehicle. In object location task mitragynine (5, 10 and 15 mg/kg) did not showed any significances discrimination between the object that had changed position than the object that had remain in a constant position.

    CONCLUSION: Our results suggest that chronic administration of mitragynine can altered the cognitive behavioral function in mice.

  18. Gothai S, Arulselvan P, Tan WS, Fakurazi S
    PMID: 27069722 DOI: 10.5455/jice.20160201055629
    BACKGROUND/AIM: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for the treatment of cuts, wounds and burns. Moringa oleifera (MO) is an herb used as a traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of MO leaves extract are completely unknown.

    MATERIALS AND METHODS: In the current study, ethyl acetate fraction of MO leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate) in human normal dermal fibroblast cells.

    RESULTS: Results revealed that lower concentration (12.5 µg/ml, 25 µg/ml, and 50 µg/ml) of ethyl acetate fraction of MO leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts.

    CONCLUSION: This study suggested that ethyl acetate fraction of MO leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use.
  19. Fard MT, Arulselvan P, Karthivashan G, Adam SK, Fakurazi S
    Pharmacogn Mag, 2015 Oct;11(Suppl 4):S556-63.
    PMID: 27013794 DOI: 10.4103/0973-1296.172961
    Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits.
  20. Muhammad AA, Arulselvan P, Cheah PS, Abas F, Fakurazi S
    Drug Des Devel Ther, 2016;10:1715-30.
    PMID: 27307703 DOI: 10.2147/DDDT.S96968
    Diabetic foot ulcer is a serious complication of diabetes, which affects a significant percentage (15%) of diabetics and up to 15%-24% of those affected may require amputation. Therefore, the economic burden of diabetic foot ulcers is enormous and is associated with high cost of treatment and prolongs hospitalization. The present study was conducted to evaluate antibacterial and in vivo wound healing activities of an aqueous fraction of Moringa oleifera on a diabetic condition. Antibacterial activity testing was carried out using agar well and tube dilution techniques. The in vivo study was conducted using six groups of animals that comprise of one normal and diabetic control group each, three treatment groups of 0.5%, 1%, and 2% w/w aqueous fraction, and a positive control group (1% w/w silver sulfadiazine). Rats were induced with diabetes using a combination of streptozotocin 65 and 150 mg/kg nicotinamide daily for 2 days, and excision wounds were created and treated with various doses (0.5%, 1%, and 2% w/w aqueous fraction) daily for 21 days. Biophysical, histological, and biochemical parameters were investigated. The results of the study revealed that aqueous fraction possessed antibacterial activity through inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli organisms. The topical application of aqueous fraction revealed enhancement of wound healing under sustained hyperglycemic condition for the duration of the experiment. This enhancement was achieved through decreased wound size, improved wound contraction, and tissue regeneration, as well as downregulation of inflammatory mediators, such as tumor necrosis factor-α, interleukin-1β, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2, and upregulation of an angiogenic marker vascular endothelial growth factor in wound tissue treated with various doses of aqueous fraction of M. oleifera. The findings suggest that aqueous fraction of M. oleifera containing Vicenin-2 active compound may accelerate wound healing in hyperglycemic condition.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links