Displaying all 2 publications

Abstract:
Sort:
  1. Fallahiarezoodar A, Abdul Kadir MR, Alizadeh M, Naveen SV, Kamarul T
    Knee Surg Sports Traumatol Arthrosc, 2014 Dec;22(12):3019-27.
    PMID: 25149643 DOI: 10.1007/s00167-014-3227-7
    PURPOSE: Reproducing the femoral rollback through specially designed mechanism in knee implants is required to achieve full knee function in total knee arthroplasty. Most contemporary implants use cam/post mechanism to replace the function of Posterior Cruciate Ligament. This study was aimed to determine the most appropriate cam and post designs to produce normal femoral rollback of the knee.

    METHODS: Three different cams (triangle, ellipse, and circle) and three different posts (straight, convex, concave) geometries were considered in this study and were analysed using kinematic analyses. Femoral rollback did not occur until reaching 50° of knee flexion. Beyond this angle, two of the nine combinations demonstrate poor knee flexion and were eliminated from the study.

    RESULTS: The combination of circle cam with concave post, straight post and convex post showed 15.6, 15.9 and 16.1 mm posterior translation of the femur, respectively. The use of ellipse cam with convex post and straight post demonstrated a 15.3 and 14.9 mm femoral rollback, whilst the combination of triangle cam with convex post and straight post showed 16.1 and 15.8 mm femoral rollback, respectively.

    CONCLUSION: The present study demonstrates that the use of circle cam and convex post created the best femoral rollback effect which in turn produces the highest amount of knee flexion. The findings of the study suggest that if the design is applied for knee implants, superior knee flexion may be possible for future patients.

    LEVEL OF EVIDENCE: IV.

  2. Alizadeh M, Kadir MR, Fadhli MM, Fallahiarezoodar A, Azmi B, Murali MR, et al.
    J Orthop Res, 2013 Sep;31(9):1447-54.
    PMID: 23640802 DOI: 10.1002/jor.22376
    Posterior instrumentation is a common fixation method used to treat thoracolumbar burst fractures. However, the role of different cross-link configurations in improving fixation stability in these fractures has not been established. A 3D finite element model of T11-L3 was used to investigate the biomechanical behavior of short (2 level) and long (4 level) segmental spine pedicle screw fixation with various cross-links to treat a hypothetical L1 vertebra burst fracture. Three types of cross-link configurations with an applied moment of 7.5 Nm and 200 N axial force were evaluated. The long construct was stiffer than the short construct irrespective of whether the cross-links were used (p < 0.05). The short constructs showed no significant differences between the cross-link configurations. The XL cross-link provided the highest stiffness and was 14.9% stiffer than the one without a cross-link. The long construct resulted in reduced stress to the adjacent vertebral bodies and screw necks, with 66.7% reduction in bending stress on L2 when the XL cross-link was used. Thus, the stability for L1 burst fracture fixation was best achieved by using long segmental posterior instrumentation constructs and an XL cross-link configuration. Cross-links did not improved stability when a short structure was used.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links