Displaying all 12 publications

Abstract:
Sort:
  1. Serag A, Zayed A, Mediani A, Farag MA
    Sci Rep, 2023 Feb 13;13(1):2533.
    PMID: 36781893 DOI: 10.1038/s41598-023-28551-x
    Tongkat ali commonly known as Malaysian Ginseng (Eurycoma longifolia) is a herbal root worldwide available in nutraceuticals, either as a crude powder or capsules blended with other herbal products. Herein, a multiplexed metabolomics approach based on nuclear magnetic resonance (NMR) and solid-phase microextraction combined with gas chromatography-mass spectrometry (SPME-GC-MS) was applied for authentic tongkat ali extract vs some commercial products quality control analysis. NMR metabolite fingerprinting identified 15 major metabolites mostly ascribed to sugars, organic and fatty acids in addition to quassinoids and cinnamates. Following that, multivariate analysis as the non-supervised principal component analysis (PCA) and supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) were applied revealing that differences were related to fatty acids and 13,21-dihydroeurycomanone being more enriched in authentic root. SPME-GC-MS aroma profiling led to the identification of 59 volatiles belonging mainly to alcohols, aldehydes/furans and sesquiterpene hydrocarbons. Results revealed that aroma of commercial products showed relatively different profiles being rich in vanillin, maltol, and methyl octanoate. Whereas E-cinnamaldehyde, endo-borneol, terpinen-4-ol, and benzaldehyde were more associated to the authentic product. The present study shed the light for the potential of metabolomics in authentication and standardization of tongkat ali and identification of its true flavor composition.
  2. Abdel Rahman RT, Kamal N, Mediani A, Farag MA
    ACS Omega, 2022 Dec 20;7(50):45797-45809.
    PMID: 36570239 DOI: 10.1021/acsomega.2c04708
    Herbal cigarettes, known as tobacco-free or nicotine-free cigarettes, are those recognized as being-tobacco free, being composed of a mixture of various herbs claimed to lessen the smoking habit hazards. However, controversial data regarding its properties occur in the literature with no comprehensive overview or analysis of its effects. Like herbal smokeless tobacco, they are often used to substitute for tobacco products (primarily cigarettes) regarded as a "nonsmoking" aid. This review capitalizes on herbal cigarettes with regard to their quality characteristics, sensory attributes, chemical composition, and health properties to rationalize their choice as a nonsmoking aid. Furthermore, the impacts of heat and/or pyrolysis that occur during smoking on its chemical composition are presented for the first time. Some herbal smokes may produce notable metabolic problems that increase the risk of several chronic metabolic diseases. In general, burning substances from plants can have a variety of negative effects on the body attributed to toxic chemicals such as carbon monoxide, polyaromatics, nicotine, and N-nitrosamines. This review compiles and discusses the phytochemical compositions detected in various herbal cigarettes alongside sensory and quality attributes and health effects.
  3. Farag MA, Elmetwally F, Elghanam R, Kamal N, Hellal K, Hamezah HS, et al.
    Food Chem, 2023 Mar 15;404(Pt B):134628.
    PMID: 36283313 DOI: 10.1016/j.foodchem.2022.134628
    Tea is one of the world's most popular beverages, with several health benefits. Polyphenols are the predominant constituents to account for its health benefits. Despite the well-known benefits of tea on health, the uniqueness of its aroma, taste, and features is an added value that contribute to the increased popularity of this beverage worldwide, and they are associated with the alterations in the metabolites during tea processing and cultivation. The manufacturing of tea consists of several stages with various processes as withering, fixing, rolling, fermentation and drying. The classification into tea types is according to such processing. The high-quality production of the various tea classes also depends on agricultural conditions, such as shading, plucking, climate, and soil composition. Metabolomics is well recognized as an effective tool for evaluating the quality of tea products. Applications in controlling the quality of tea products and adulterant detection are discussed in this review.
  4. Li Y, Dong L, Liu Y, Chen Q, Wu Z, Liu L, et al.
    Food Chem, 2024 Mar 01;435:137572.
    PMID: 37778268 DOI: 10.1016/j.foodchem.2023.137572
    The effects of covalent binding of protocatechuic acid (PA) and gallic acid (GA) to lactoferrin (LF) on the structure, functional, and antioxidant properties of the protein conjugate were investigated. These protein-phenolic conjugates were produced by laccase cross-linking and ultrasound-assisted free radical grafting, which were characterized using turbidity, particle size, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. Structural changes in conjugates were monitored by endogenous fluorescence spectroscopy, fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD). The antioxidant capacities and pH stability were determined using DPPH, ABTS, FRAP, and potentiometric analysis. The enzymatic cross-linking and free radical grafting yielded LF-PA/GA conjugates with altered hydrodynamic diameter and zeta-potential. Spectroscopic and chromatographic analyses revealed that binding to PA/GA altered the molecular structure of LF, with a decrease in LF isoelectric point post binding to PA/GA, without affecting antioxidant activities. In conclusion, LF-PA/GA conjugates present potential applications in the food industry.
  5. Shi B, Guo X, Liu H, Jiang K, Liu L, Yan N, et al.
    Food Chem, 2024 Apr 16;438:137994.
    PMID: 37984001 DOI: 10.1016/j.foodchem.2023.137994
    Foods rich in carbohydrates or fats undergo the Maillard reaction during frying, which promotes the color, flavor and sensory characteristics formation. In the meanwhile, Maillard reaction intermediates and advanced glycation end products (AGEs) have a negative impact on food sensory quality and gut homeostasis. This negative effect can be influenced by food composition and other processing factors. Whole grain products are rich in polyphenols, which can capture carbonyl compounds in Maillard reaction, and reduce the production of AGEs during frying. This review summarizes the Maillard reaction production intermediates and AGEs formation mechanism in fried food and analyzes the factors affecting the sensory formation of food. In the meanwhile, the effects of Maillard reaction intermediates and AGEs on gut homeostasis were summarized. Overall, the innovative processing methods about the Maillard reaction are summarized to optimize the sensory properties of fried foods while minimizing the formation of AGEs.
  6. Hassan EM, El Gendy AEG, Abd-ElGawad AM, Elshamy AI, Farag MA, Alamery SF, et al.
    Molecules, 2020 Dec 29;26(1).
    PMID: 33383905 DOI: 10.3390/molecules26010119
    Guava (Psidium guajava) leaves are commonly used in the treatment of diseases. They are considered a waste product resulting from guava cultivation. The leaves are very rich in essential oils (EOs) and volatiles. This work represents the detailed comparative chemical profiles of EOs derived from the leaves of six guava varieties cultivated in Egypt, including Red Malaysian (RM), El-Qanater (EQ), White Indian (WI), Early (E), El-Sabahya El-Gedida (ESEG), and Red Indian (RI), cultivated on the same farm in Egypt. The EOs from the leaves of guava varieties were extracted by hydro-distillation and analyzed with GC-MS. The EOs were categorized in a holistic manner using chemometric tools. The hydro-distillation of the samples yielded 0.11-0.48% of the EO (v/w). The GC-MS analysis of the extracted EOs showed the presence of 38 identified compounds from the six varieties. The sesquiterpene compounds were recorded as main compounds of E, EQ, ESEG, RI, and WI varieties, while the RM variety attained the highest content of monoterpenes (56.87%). The sesquiterpenes, β-caryophyllene (11.21-43.20%), and globulol (76.17-26.42%) were detected as the major compounds of all studied guava varieties, while trans-nerolidol (0.53-10.14) was reported as a plentiful compound in all of the varieties except for the RM variety. A high concentration of D-limonene was detected in the EOs of the RM (33.96%), WI (27.04%), and ESEG (9.10%) varieties. These major compounds were consistent with those reported for other genotypes from different countries. Overall, the EOs' composition and the chemometric analysis revealed substantial variations among the studied varieties that might be ascribed to genetic variability, considering the stability of the cultivation and climate conditions. Therefore, this chemical polymorphism of the studied varieties supports that these varieties could be considered as genotypes of P. guajava. It is worth mentioning here that the EOs, derived from leaves considered to be agricultural waste, of the studied varieties showed that they are rich in biologically active compounds, particularly β-caryophyllene, trans-nerolidol, globulol, and D-limonene. These could be considered as added value for pharmacological and industrial applications. Further study is recommended to confirm the chemical variations of the studied varieties at a molecular level, as well as their possible medicinal and industrial uses.
  7. Wu H, Sang S, Weng P, Pan D, Wu Z, Yang J, et al.
    Compr Rev Food Sci Food Saf, 2023 Nov;22(6):4217-4241.
    PMID: 37583298 DOI: 10.1111/1541-4337.13217
    Starch-based materials have viscoelasticity, viscous film-forming, dough pseudoplasticity, and rheological properties, which possess the structural characteristics (crystal structure, double helix structure, and layered structure) suitable for three-dimensional (3D) food printing inks. 3D food printing technology has significant advantages in customizing personalized and precise nutrition, expanding the range of ingredients, designing unique food appearances, and simplifying the food supply chain. Precision nutrition aims to consider individual nutritional needs and individual differences, which include special food product design and personalized precise nutrition, thus expanding future food resources, then simplifying the food supply chain, and attracting extensive attention in food industry. Different types of starch-based materials with different structures and rheological properties meet different 3D food printing technology requirements. Starch-based materials suitable for 3D food printing technology can accurately deliver and release active substances or drugs. These active substances or drugs have certain regulatory effects on the gut microbiome and diabetes, so as to maintain personalized and accurate nutrition.
  8. Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, et al.
    PMID: 37552798 DOI: 10.1080/10408398.2023.2239350
    Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
  9. Liu H, Guo X, Jiang K, Shi B, Liu L, Hou R, et al.
    Food Chem, 2024 Feb 16;446:138739.
    PMID: 38412807 DOI: 10.1016/j.foodchem.2024.138739
    Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.
  10. El-Seedi HR, Khalifa SAM, Taher EA, Farag MA, Saeed A, Gamal M, et al.
    Pharmacol Res, 2019 03;141:123-175.
    PMID: 30579976 DOI: 10.1016/j.phrs.2018.12.015
    Cardiac glycosides (CGs) are a class of naturally occurring steroid-like compounds, and members of this class have been in clinical use for more than 1500 years. They have been used in folk medicine as arrow poisons, abortifacients, heart tonics, emetics, and diuretics as well as in other applications. The major use of CGs today is based on their ability to inhibit the membrane-bound Na+/K+-ATPase enzyme, and they are regarded as an effective treatment for congestive heart failure (CHF), cardiac arrhythmia and atrial fibrillation. Furthermore, increasing evidence has indicated the potential cytotoxic effects of CGs against various types of cancer. In this review, we highlight some of the structural features of this class of natural products that are crucial for their efficacy, some methods of isolating these compounds from natural resources, and the structural elucidation tools that have been used. We also describe their physicochemical properties and several modern biotechnological approaches for preparing CGs that do not require plant sources.
  11. Ramadan NS, Wessjohann LA, Mocan A, Vodnar DC, El-Sayed NH, El-Toumy SA, et al.
    Molecules, 2020 May 22;25(10).
    PMID: 32455938 DOI: 10.3390/molecules25102423
    Averrhoa carambola L. is a tropical tree with edible fruit that grows at different climatic conditions. Despite its nutritive value and reported health benefits, it is a controversial fruit owing to its rich oxalate content. The present study aimed at investigating aroma and nutrient primary metabolites distribution in A. carambola fruits grown in Indonesia, Malaysia (its endemic origin) versus Egypt, and at different ripening stages. Two techniques were employed to assess volatile and non-volatile metabolites including headspace solid-phase micro-extraction (HS-SPME) joined with gas chromatography coupled with mass-spectrometry (GC-MS) and GC-MS post silylation, respectively. Twenty-four volatiles were detected, with esters amounting for the major class of volatiles in Egyptian fruit at ca. 66%, with methyl caproate as the major component, distinguishing it from other origins. In contrast, aldehydes predominated tropically grown fruits with the ether myristicin found exclusively in these. Primary metabolites profiling led to the identification of 117 metabolites viz. sugars, polyols and organic acids. Fructose (38-48%) and glucose (21-25%) predominated sugar compositions in ripe fruits, whereas sorbitol was the major sugar alcohol (2.4-10.5%) in ripe fruits as well. Oxalic acid, an anti-nutrient with potential health risks, was the major organic acid detected in all the studied fruits (1.7-2.7%), except the Malaysian one (0.07%). It increases upon fruit ripening, including considerable amounts of volatile oxalate esters detected via SPME, and which must not be omitted in total oxalate determinations for safety assessments.
  12. El-Seedi HR, Azeem M, Khalil NS, Sakr HH, Khalifa SAM, Awang K, et al.
    Exp Appl Acarol, 2017 Sep;73(1):139-157.
    PMID: 28864886 DOI: 10.1007/s10493-017-0165-3
    Due to the role of Ixodes ricinus (L.) (Acari: Ixodidae) in the transmission of many serious pathogens, personal protection against bites of this tick is essential. In the present study the essential oils from 11 aromatic Egyptian plants were isolated and their repellent activity against I. ricinus nymphs was evaluated Three oils (i.e. Conyza dioscoridis L., Artemisia herba-alba Asso and Calendula officinalis L.) elicited high repellent activity in vitro of 94, 84.2 and 82%, respectively. The most active essential oil (C. dioscoridis) was applied in the field at a concentration of 6.5 µg/cm2 and elicited a significant repellent activity against I. ricinus nymphs by 61.1%. The most repellent plants C. dioscoridis, C. officinalis and A. herba-alba yielded essential oils by 0.17, 0.11 and 0.14%, respectively. These oils were further investigated using gas chromatography-mass spectrometry analysis. α-Cadinol (10.7%) and hexadecanoic acid (10.5%) were the major components of C. dioscoridis whereas in C. officinalis, α-cadinol (21.2%) and carvone (18.2%) were major components. Artemisia herba-alba contained piperitone (26.5%), ethyl cinnamate (9.5%), camphor (7.7%) and hexadecanoic acid (6.9%). Essential oils of these three plants have a potential to be used for personal protection against tick bites.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links