Displaying all 2 publications

Abstract:
Sort:
  1. Hindia MN, Rahman TA, Ojukwu H, Hanafi EB, Fattouh A
    PLoS One, 2016;11(5):e0155077.
    PMID: 27152423 DOI: 10.1371/journal.pone.0155077
    As the enterprise of the "Internet of Things" is rapidly gaining widespread acceptance, sensors are being deployed in an unrestrained manner around the world to make efficient use of this new technological evolution. A recent survey has shown that sensor deployments over the past decade have increased significantly and has predicted an upsurge in the future growth rate. In health-care services, for instance, sensors are used as a key technology to enable Internet of Things oriented health-care monitoring systems. In this paper, we have proposed a two-stage fundamental approach to facilitate the implementation of such a system. In the first stage, sensors promptly gather together the particle measurements of an android application. Then, in the second stage, the collected data are sent over a Femto-LTE network following a new scheduling technique. The proposed scheduling strategy is used to send the data according to the application's priority. The efficiency of the proposed technique is demonstrated by comparing it with that of well-known algorithms, namely, proportional fairness and exponential proportional fairness.
  2. Al-Samman AM, Azmi MH, Rahman TA, Khan I, Hindia MN, Fattouh A
    PLoS One, 2016;11(12):e0164944.
    PMID: 27992445 DOI: 10.1371/journal.pone.0164944
    This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk-1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links