Displaying all 9 publications

Abstract:
Sort:
  1. Feng H, Wang F, Song G, Liu L
    Int J Environ Res Public Health, 2022 Aug 25;19(17).
    PMID: 36078329 DOI: 10.3390/ijerph191710614
    With the development of blockchain, big data, cloud computing and other new technologies, how to achieve innovative development and green sustainable development in digital transformation has become one of the key issues for enterprises to obtain and maintain core competitiveness. However, little of the literature has paid attention to the impact of digital transformation on enterprise green innovation. Using the data of Chinese A-share listed companies from 2010 to 2020, this paper empirically analyzes the impact of enterprise digital transformation on green innovation and its transmission mechanism, by constructing double fixed-effect models. The results show that digital transformation has remarkably promoted the green innovation of enterprises. R&D investment, government subsidies, and income tax burden have played a conductive role between digital transformation and enterprise green innovation. Furthermore, digital transformation can significantly promote the high-quality green innovation of enterprises and also plays a more significant role in promoting the green innovation of high-tech enterprises and state-owned enterprises. A robustness test is carried out by using the lag data and changing the measurement methods of the dependent variable and independent variables, and the research conclusions are still valid. Based on resource-based theory and dynamic capability theory, this paper reveals the impact path of digital transformation on enterprise green innovation, further expanding the research field of digital transformation and enriching the research on the influencing factors of enterprise green innovation. This paper provides policy suggestions for the government to improve the enterprise green innovation level by increasing government subsidies and providing tax incentives and also provides reference for digital transformation enterprises to accelerate green innovation by increasing R&D investment, obtaining government subsidies, and acquiring tax policy support.
  2. Feng H, Wang Z, Sajab MS, Abdul PM, Ding G
    Int J Biol Macromol, 2023 Jan 10;230:123210.
    PMID: 36639077 DOI: 10.1016/j.ijbiomac.2023.123210
    This is the first report of the use of steam flash explosion (SFE) to prepare chitinous nanoparticles from black soldier fly (BSF). SFE treatment was performed at a steam pressure of 0.45 to 1.60 MPa with a holding time of 60 s. As the pressure increased, the particle size of the chitinous particles decreased. Under SFE at 1.60 MPa, chitinous nanoparticles with sizes ranging from 59 to 162 nm were produced. SEM, AFM, Raman spectroscopy, FT-IR spectroscopy, 1H NMR, TGA, and DSC were used to characterize the BSF chitin materials. It was demonstrated that SFE treatment deacetylated chitin to obtain chitosan with 91.24 % deacetylation. In addition, the polymer backbone was maintained, and the degree of polymerization of chitosan nanoparticles was reduced. The activity of the cationic groups of chitosan nanoparticles was improved, thereby enhancing the temperature sensitivity of the polymeric material. It can be concluded that the SFE one-step processing method is a simple and efficient way to prepare homogeneous biomaterial nanoparticles. This study has implications for the development of chitosan nanomaterials for biomedical applications.
  3. Guo W, Banerjee AK, Wu H, Ng WL, Feng H, Qiao S, et al.
    Front Plant Sci, 2021;12:637009.
    PMID: 34249031 DOI: 10.3389/fpls.2021.637009
    Mangroves are ecologically important forest communities in tropical and subtropical coasts, the effective management of which requires understanding of their phylogeographic patterns. However, these patterns often vary among different species, even among ecologically similar taxa or congeneric species. Here, we investigated the levels and patterns of genetic variation within Lumnitzera consisting of two species (L. racemosa and L. littorea) with nearly sympatric ranges across the Indo-West Pacific (IWP) region by sequencing three chloroplast DNA regions (for both species) and genotyping 11 nuclear microsatellite loci (for L. littorea). Consistent with findings in studies on other mangrove species, we found that both L. racemosa and L. littorea showed relatively high genetic variation among populations but low genetic variation within populations. Haplotype network and genetic clustering analyses indicated two well-differentiated clades in both L. racemosa and L. littorea. The relationship between geographic and genetic distances and divergence time estimates of the haplotypes indicated that limited dispersal ability of the propagules, emergence of land barriers during ancient sea-level changes, and contemporary oceanic circulation pattern in the IWP influenced the current population structure of the two species. However, the position of genetic break was found to vary between the two species: in L. racemosa, strong divergence was observed between populations from the Indian Ocean and the Pacific Ocean possibly due to land barrier effect of the Malay Peninsula; in L. littorea, the phylogeographic pattern was created by a more eastward genetic break along the biogeographic barrier identified as the Huxley's line. Overall, our findings strongly supported previous hypothesis of mangrove species divergence and revealed that the two Lumnitzera species have different phylogeographic patterns despite their close genetic relationship and similar current geographic distribution. The findings also provided references for the management of Lumnitzera mangroves, especially for the threatened L. littorea.
  4. Mu D, Yuan D, Feng H, Xing F, Teo FY, Li S
    Mar Pollut Bull, 2017 Jan 30;114(2):705-714.
    PMID: 27802871 DOI: 10.1016/j.marpolbul.2016.10.056
    Sediment cores and overlying water samples were collected at four sites in Tianjin Coastal Zone, Bohai Bay, to investigate nutrient (N, P and Si) exchanges across the sediment-water interface. The exchange fluxes of each nutrient species were estimated based on the porewater profiles and laboratory incubation experiments. The results showed significant differences between the two methods, which implied that molecular diffusion alone was not the dominant process controlling nutrient exchanges at these sites. The impacts of redox conditions and bioturbation on the nutrient fluxes were confirmed by the laboratory incubation experiments. The results from this study showed that the nutrient fluxes measured directly from the incubation experiment were more reliable than that predicted from the porewater profiles. The possible impacts causing variations in the nutrient fluxes include sewage discharge and land reclamation.
  5. Ren T, Feng H, Xu C, Xu Q, Fu B, Azwar E, et al.
    Chemosphere, 2022 Jan 22;294:133710.
    PMID: 35074326 DOI: 10.1016/j.chemosphere.2022.133710
    The usage of fertilizer with high nitrogen content in many countries, as well as its enormous surplus, has a negative impact on the soil ecological environment in agricultural system. This consumption of nitrogen fertilizer can be minimized by applying biochar to maintain the sufficient supply of nitrogen as nutrient to the near-root zone. This study investigated the effects of various amounts of biochar application (450, 900, 1350, and 1800 kg/hm2) and reduction of nitrogen fertilizer amount (10, 15, 20, and 25%) on the nutrients and microorganism community structure in rhizosphere growing tobacco plant. The microorganism community was found essential in improving nitrogen retention. Compared with conventional treatment, an application of biochar in rhizosphere soil increased the content of soil available phosphorus, organic matter and total nitrogen by 21.47%, 26.34%, and 9.52%, respectively. It also increased the abundance of microorganisms that are capable of degrading and utilizing organic matter and cellulose, such as Actinobacteria and Acidobacteria. The relative abundance of Chloroflexi was also increased by 49.67-78.61%, and the Acidobacteria increased by 14.79-39.13%. Overall, the application of biochar with reduced nitrogen fertilizer amount can regulate the rhizosphere microecological environment of tobacco plants and their microbial population structure, thereby promoting soil health for tobacco plant growth while reducing soil acidification and environmental pollution caused by excessive nitrogen fertilizer.
  6. Yan S, Ren T, Wan Mahari WA, Feng H, Xu C, Yun F, et al.
    Sci Total Environ, 2021 Aug 24;802:149835.
    PMID: 34461468 DOI: 10.1016/j.scitotenv.2021.149835
    Soil carbon supplementation is known to stimulate plant growth by improving soil fertility and plant nutrient uptake. However, the underlying process and chemical mechanism that could explain the interrelationship between soil carbon supplementation, soil micro-ecology, and the growth and quality of plant remain unclear. In this study, we investigated the influence and mechanism of soil carbon supplementation on the bacterial community, chemical cycling, mineral nutrition absorption, growth and properties of tobacco leaves. The soil carbon supplementation increased amino acid, carbohydrates, chemical energy metabolism, and bacterial richness in the soil. This led to increased content of sugar (23.75%), starch (13.25%), and chlorophyll (10.56%) in tobacco leaves. Linear discriminant analysis revealed 49 key phylotypes and significant increment of some of the Plant Growth-Promoting Rhizobacteria (PGPR) genera (Bacillus, Novosphingobium, Pseudomonas, Sphingomonas) in the rhizosphere, which can influence the tobacco growth. Partial Least Squares Path Modeling (PLS-PM) showed that soil carbon supplementation positively affected the sugar and starch contents in tobacco leaves by possibly altering the photosynthesis pathway towards increasing the aroma of the leaves, thus contributing to enhanced tobacco flavor. These findings are useful for understanding the influence of soil carbon supplementation on bacterial community for improving the yields and quality of tobacco in industrial plantation.
  7. Xu Z, Nan W, Zhang X, Sun Y, Yang J, Lu K, et al.
    J Mol Neurosci, 2018 Jun;65(2):222-233.
    PMID: 29845511 DOI: 10.1007/s12031-018-1075-5
    Mesenchymal stem cell (MSC) therapy is a promising prospect for the treatment of Alzheimer's disease (AD); however, the underlying mechanisms by which MSCs mediate positive effects are still unclear. We speculated that MSCs mediate microglial autophagy and enhance the clearance of Aβ. To test this hypothesis, we cultured BV2 microglial cells with umbilical cord mesenchymal stem cells conditioned medium (ucMSCs-CM) in the presence or absence of Aβ25-35 oligomers. We investigated BV2 cell proliferation, cell death, and Aβ25-35 phagocytosis as well as protein expression levels of LC3, Beclin-1, p62, insulin-degrading enzyme (IDE), and neprilysin (Nep) with western blotting. The results showed that ucMSCs-CM inhibited the proliferation and decreased cell death of BV2 cells induced by Aβ25-35. ucMSCs-CM also promoted the phagocytosis of Aβ25-35 by BV2 cells and changed the expression of autophagy-related proteins LC3, Beclin-1, and p62. Treatment also upregulated the expression of Aβ-degrading enzymes IDE and Nep. Furthermore, the culture medium in BV2 cells with Aβ25-35 and ucMSCs-CM prevented neuronal cell SH-SY5Y from cell death compared to control medium without ucMSCs-CM. Altogether, these data suggested that ucMSCs-CM protect microglial and neuronal cells from Aβ25-35-induced cell death and promote Aβ phagocytosis by modulating autophagy and enhancing the expression of Aβ-degrading enzymes in microglia.
  8. Ren T, Chen N, Wan Mahari WA, Xu C, Feng H, Ji X, et al.
    Environ Res, 2021 01;192:110273.
    PMID: 33002505 DOI: 10.1016/j.envres.2020.110273
    Pot experiments were conducted to investigate the influence of biochar addition and the mechanisms that alleviate Cd stress in the growth of tobacco plant. Cadmium showed an inhibitory effect on tobacco growth at different post-transplantation times, and this increased with the increase in soil Cd concentration. The growth index decreased by more than 10%, and the photosynthetic pigment and photosynthetic characteristics of the tobacco leaf were significantly reduced, and the antioxidant enzyme activity was enhanced. Application of biochar effectively alleviated the inhibitory effect of Cd on tobacco growth, and the alleviation effect of treatments is more significant to the plants with a higher Cd concentration. The contents of chlorophyll a, chlorophyll b, and carotenoids in the leaves of tobacco plants treated with biochar increased by 9.99%, 12.58%, and 10.32%, respectively, after 60 days of transplantation. The photosynthetic characteristics index of the net photosynthetic rate increased by 11.48%, stomatal conductance increased by 11.44%, and intercellular carbon dioxide concentration decreased to 0.92. Based on the treatments, during the growth period, the antioxidant enzyme activities of tobacco leaves comprising catalase, peroxidase, superoxide dismutase, and malondialdehyde increased by 7.62%, 10.41%, 10.58%, and 12.57%, respectively, after the application of biochar. Our results show that biochar containing functional groups can effectively reduce the effect of Cd stress by intensifying the adsorption or passivation of Cd in the soil, thereby, significantly reducing the Cd content in plant leaves, and providing a theoretical basis and method to alleviate soil Cd pollution and effect soil remediation.
  9. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links