Displaying all 19 publications

Abstract:
Sort:
  1. Yamada T, Yamada Y, Okuda T, Fletcher C
    Oecologia, 2013 Jul;172(3):713-24.
    PMID: 23183820 DOI: 10.1007/s00442-012-2529-z
    Differences in the density of conspecific tree individuals in response to environmental gradients are well documented for many tree species, but how such density differences are generated and maintained is poorly understood. We examined the segregation of six dipterocarp species among three soil types in the Pasoh tropical forest, Malaysia. We examined how individual performance and population dynamics changed across the soil types using 10-year demographic data to compare tree performance across soil types, and constructed population matrix models to analyze the population dynamics. Species showed only minor changes in mortality and juvenile growth across soil types, although recruitment differed greatly. Clear, interspecific demographic trade-offs between growth and mortality were found in all soil types. The relative trade-offs by a species did not differ substantially among the soil types. Population sizes were projected to remain stable in all soil types for all species with one exception. Our life-table response experiment demonstrated that the population dynamics of a species differed only subtly among soil types. Therefore, species with strong density differences across soil types do not necessarily differ greatly in their population dynamics across the soil types. In contrast, interspecific differences in population dynamics were large. The trade-off between mortality and growth led to a negative correlation between the contributions of mortality and growth to variations in the population growth rate (λ) and thus reduced their net contributions. Recruitment had little impact on the variation in λ. The combination of these factors resulted in little variation in λ among species.
  2. Shima K, Yamada T, Okuda T, Fletcher C, Kassim AR
    Sci Rep, 2018 01 18;8(1):1024.
    PMID: 29348596 DOI: 10.1038/s41598-018-19250-z
    Selective logging that is commonly conducted in tropical forests may change tree species diversity. In rarely disturbed tropical forests, locally rare species exhibit higher survival rates. If this non-random process occurs in a logged forest, the forest will rapidly recover its tree species diversity. Here we determined whether a forest in the Pasoh Forest Reserve, Malaysia, which was selectively logged 40 years ago, recovered its original species diversity (species richness and composition). To explore this, we compared the dynamics of secies diversity between unlogged forest plot (18.6 ha) and logged forest plot (5.4 ha). We found that 40 years are not sufficient to recover species diversity after logging. Unlike unlogged forests, tree deaths and recruitments did not contribute to increased diversity in the selectively logged forests. Our results predict that selectively logged forests require a longer time at least than our observing period (40 years) to regain their diversity.
  3. Abdul Aziz MF, Mohd Top Mohd Tah M, Shohaimi S, Ab Ghani NI, Fletcher C
    Ecol Evol, 2021 Aug;11(16):10741-10753.
    PMID: 34429877 DOI: 10.1002/ece3.7721
    A research study on morphometrics of Kalophrynus palmatissimus (commonly known as Lowland Grainy Frog) at Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan was carried out from 12 November 2016 to 13 September 2017. The study was to examine data on the morphometric traits of K. palmatissimus at the two forest reserves. 15 morphometric traits of K. palmatissimus that were taken by using vernier calipers. Frog surveys were done by using 15 and 18 nocturnal 400 m transect lines with an interval distance of 20 m at AHFR and PFR, respectively. The GPS coordinates for all frog samples were recorded to ensure the precise geographic location. In addition, five climatic data were recorded. The results showed that most morphometric traits in AHFR (n = 34) and PFR (n = 31) were positively correlated with each other. On the other hand, climatic factor, which was soil pH, had a significant positive influence on most of the morphometric traits (p  .05). Later, it was found that the snout-vent length of K. palmatissimus at AHFR was slightly larger than at PFR (AHFR: μ = 37.00 mm, SE = 1.16 c.f. PFR: μ = 30.29 mm, SE = 1.07). It showed that there were variations in morphometric traits of K. palmatissimus at AHFR and PFR. From PCA analysis, morphometric traits are grouped into two components for AHFR and PFR, respectively. In AHFR, head length, eye diameter, head width, internarial distance, interorbital distance, forearm length, tibia length, foot length, and thigh length were strongly correlated, while snout length and eye-nostril distance were strongly correlated. In PFR, eye diameter, head width, internarial distance, interorbital distance, foot length, and thigh length were strongly correlated, though snout length and eye-nostril distance were strongly correlated, hence, suggested that all morphometric traits grow simultaneously in K. palmatissimus with eye-nostril distance (EN), and snout length (SL) growing almost simultaneously at AHFR (r = .91) and PFR (r = .97). There is still a lack of available information regarding the distribution and morphometric studies of K. palmatissimus in Malaysia, especially at AHFR and PFR. This study showed 15 different morphometric traits of K. palmatisssimus between AHFR and PFR, with K. palmatissimus at AHFR were found to be slightly larger than at PFR.
  4. Azmy MM, Hashim M, Numata S, Hosaka T, Noor NS, Fletcher C
    Sci Rep, 2016 08 26;6:32329.
    PMID: 27561887 DOI: 10.1038/srep32329
    General flowering (GF) is a unique phenomenon wherein, at irregular intervals, taxonomically diverse trees in Southeast Asian dipterocarp forests synchronize their reproduction at the community level. Triggers of GF, including drought and low minimum temperatures a few months previously has been limitedly observed across large regional scales due to lack of meteorological stations. Here, we aim to identify the climatic conditions that trigger large-scale GF in Peninsular Malaysia using satellite sensors, Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), to evaluate the climatic conditions of focal forests. We observed antecedent drought, low temperature and high photosynthetic radiation conditions before large-scale GF events, suggesting that large-scale GF events could be triggered by these factors. In contrast, we found higher-magnitude GF in forests where lower precipitation preceded large-scale GF events. GF magnitude was also negatively influenced by land surface temperature (LST) for a large-scale GF event. Therefore, we suggest that spatial extent of drought may be related to that of GF forests, and that the spatial pattern of LST may be related to that of GF occurrence. With significant new findings and other results that were consistent with previous research we clarified complicated environmental correlates with the GF phenomenon.
  5. Luskin MS, Brashares JS, Ickes K, Sun IF, Fletcher C, Wright SJ, et al.
    Nat Commun, 2017 12 20;8(1):2231.
    PMID: 29263381 DOI: 10.1038/s41467-017-01920-7
    Native species that forage in farmland may increase their local abundances thereby affecting adjacent ecosystems within their landscape. We used two decades of ecological data from a protected primary rainforest in Malaysia to illutrate how subsidies from neighboring oil palm plantations triggered powerful secondary 'cascading' effects on natural habitats located >1.3 km away. We found (i) oil palm fruit drove 100-fold increases in crop-raiding native wild boar (Sus scrofa), (ii) wild boar used thousands of understory plants to construct birthing nests in the pristine forest interior, and (iii) nest building caused a 62% decline in forest tree sapling density over the 24-year study period. The long-term, landscape-scale indirect effects from agriculture suggest its full ecological footprint may be larger in extent than is currently recognized. Cross-boundary subsidy cascades may be widespread in both terrestrial and marine ecosystems and present significant conservation challenges.
  6. Tomimatsu H, Iio A, Adachi M, Saw LG, Fletcher C, Tang Y
    Tree Physiol, 2014 Sep;34(9):944-54.
    PMID: 25187569 DOI: 10.1093/treephys/tpu066
    Understory plants in tropical forests often experience a low-light environment combined with high CO2 concentration. We hypothesized that the high CO2 concentration may compensate for leaf carbon loss caused by the low light, through increasing light-use efficiency of both steady-state and dynamic photosynthetic properties. To test the hypothesis, we examined CO2 gas exchange in response to an artificial lightfleck in Dipterocarpus sublamellatus Foxw. seedlings under contrasting CO2 conditions: 350 and 700 μmol CO2 mol(-1) air in a tropical rain forest, Pasoh, Malaysia. Total photosynthetic carbon gain from the lightfleck was about double when subjected to the high CO2 when compared with the low CO2 concentration. The increase of light-use efficiency in dynamic photosynthesis contributed 7% of the increased carbon gain, most of which was due to reduction of photosynthetic induction to light increase under the high CO2. The light compensation point of photosynthesis decreased by 58% and the apparent quantum yield increased by 26% at the high CO2 compared with those at the low CO2. The study suggests that high CO2 increases photosynthetic light-use efficiency under both steady-state and fluctuating light conditions, which should be considered in assessing the leaf carbon gain of understory plants in low-light environments.
  7. Osuri AM, Ratnam J, Varma V, Alvarez-Loayza P, Hurtado Astaiza J, Bradford M, et al.
    Nat Commun, 2016 04 25;7:11351.
    PMID: 27108957 DOI: 10.1038/ncomms11351
    Defaunation is causing declines of large-seeded animal-dispersed trees in tropical forests worldwide, but whether and how these declines will affect carbon storage across this biome is unclear. Here we show, using a pan-tropical data set, that simulated declines of large-seeded animal-dispersed trees have contrasting effects on aboveground carbon stocks across Earth's tropical forests. In our simulations, African, American and South Asian forests, which have high proportions of animal-dispersed species, consistently show carbon losses (2-12%), but Southeast Asian and Australian forests, where there are more abiotically dispersed species, show little to no carbon losses or marginal gains (±1%). These patterns result primarily from changes in wood volume, and are underlain by consistent relationships in our empirical data (∼2,100 species), wherein, large-seeded animal-dispersed species are larger as adults than small-seeded animal-dispersed species, but are smaller than abiotically dispersed species. Thus, floristic differences and distinct dispersal mode-seed size-adult size combinations can drive contrasting regional responses to defaunation.
  8. Usinowicz J, Chang-Yang CH, Chen YY, Clark JS, Fletcher C, Garwood NC, et al.
    Nature, 2017 10 05;550(7674):105-108.
    PMID: 28953870 DOI: 10.1038/nature24038
    The tropical forests of Borneo and Amazonia may each contain more tree species diversity in half a square kilometre than do all the temperate forests of Europe, North America, and Asia combined. Biologists have long been fascinated by this disparity, using it to investigate potential drivers of biodiversity. Latitudinal variation in many of these drivers is expected to create geographic differences in ecological and evolutionary processes, and evidence increasingly shows that tropical ecosystems have higher rates of diversification, clade origination, and clade dispersal. However, there is currently no evidence to link gradients in ecological processes within communities at a local scale directly to the geographic gradient in biodiversity. Here, we show geographic variation in the storage effect, an ecological mechanism that reduces the potential for competitive exclusion more strongly in the tropics than it does in temperate and boreal zones, decreasing the ratio of interspecific-to-intraspecific competition by 0.25% for each degree of latitude that an ecosystem is located closer to the Equator. Additionally, we find evidence that latitudinal variation in climate underpins these differences; longer growing seasons in the tropics reduce constraints on the seasonal timing of reproduction, permitting lower recruitment synchrony between species and thereby enhancing niche partitioning through the storage effect. Our results demonstrate that the strength of the storage effect, and therefore its impact on diversity within communities, varies latitudinally in association with climate. This finding highlights the importance of biotic interactions in shaping geographic diversity patterns, and emphasizes the need to understand the mechanisms underpinning ecological processes in greater detail than has previously been appreciated.
  9. Beaudrot L, Ahumada JA, O'Brien T, Alvarez-Loayza P, Boekee K, Campos-Arceiz A, et al.
    PLoS Biol, 2016 Jan;14(1):e1002357.
    PMID: 26785119 DOI: 10.1371/journal.pbio.1002357
    Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world's species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3-8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify conservation strategies that can avert biodiversity collapse.
  10. Beaudrot L, Kroetz K, Alvarez-Loayza P, Amaral I, Breuer T, Fletcher C, et al.
    Ecol Appl, 2016 Jun;26(4):1098-1111.
    PMID: 28581662 DOI: 10.1890/15-0935
    The conservation of tropical forest carbon stocks offers the opportunity to curb climate change by reducing greenhouse gas emissions from deforestation and simultaneously conserve biodiversity. However, there has been considerable debate about the extent to which carbon stock conservation will provide benefits to biodiversity in part because whether forests that contain high carbon density in their aboveground biomass also contain high animal diversity is unknown. Here, we empirically examined medium to large bodied ground-dwelling mammal and bird (hereafter "wildlife") diversity and carbon stock levels within the tropics using camera trap and vegetation data from a pantropical network of sites. Specifically, we tested whether tropical forests that stored more carbon contained higher wildlife species richness, taxonomic diversity, and trait diversity. We found that carbon stocks were not a significant predictor for any of these three measures of diversity, which suggests that benefits for wildlife diversity will not be maximized unless wildlife diversity is explicitly taken into account; prioritizing carbon stocks alone will not necessarily meet biodiversity conservation goals. We recommend conservation planning that considers both objectives because there is the potential for more wildlife diversity and carbon stock conservation to be achieved for the same total budget if both objectives are pursued in tandem rather than independently. Tropical forests with low elevation variability and low tree density supported significantly higher wildlife diversity. These tropical forest characteristics may provide more affordable proxies of wildlife diversity for future multi-objective conservation planning when fine scale data on wildlife are lacking.
  11. Sreekar R, Katabuchi M, Nakamura A, Corlett RT, Slik JWF, Fletcher C, et al.
    R Soc Open Sci, 2018 Sep;5(9):181168.
    PMID: 30839691 DOI: 10.1098/rsos.181168
    The relationship between β-diversity and latitude still remains to be a core question in ecology because of the lack of consensus between studies. One hypothesis for the lack of consensus between studies is that spatial scale changes the relationship between latitude and β-diversity. Here, we test this hypothesis using tree data from 15 large-scale forest plots (greater than or equal to 15 ha, diameter at breast height ≥ 1 cm) across a latitudinal gradient (3-30o) in the Asia-Pacific region. We found that the observed β-diversity decreased with increasing latitude when sampling local tree communities at small spatial scale (grain size ≤0.1 ha), but the observed β-diversity did not change with latitude when sampling at large spatial scales (greater than or equal to 0.25 ha). Differences in latitudinal β-diversity gradients across spatial scales were caused by pooled species richness (γ-diversity), which influenced observed β-diversity values at small spatial scales, but not at large spatial scales. Therefore, spatial scale changes the relationship between β-diversity, γ-diversity and latitude, and improving sample representativeness avoids the γ-dependence of β-diversity.
  12. Johnson DJ, Needham J, Xu C, Massoud EC, Davies SJ, Anderson-Teixeira KJ, et al.
    Nat Ecol Evol, 2018 09;2(9):1436-1442.
    PMID: 30104751 DOI: 10.1038/s41559-018-0626-z
    Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four 'survival modes' that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.
  13. Russo SE, McMahon SM, Detto M, Ledder G, Wright SJ, Condit RS, et al.
    Nat Ecol Evol, 2021 Feb;5(2):174-183.
    PMID: 33199870 DOI: 10.1038/s41559-020-01340-9
    Resource allocation within trees is a zero-sum game. Unavoidable trade-offs dictate that allocation to growth-promoting functions curtails other functions, generating a gradient of investment in growth versus survival along which tree species align, known as the interspecific growth-mortality trade-off. This paradigm is widely accepted but not well established. Using demographic data for 1,111 tree species across ten tropical forests, we tested the generality of the growth-mortality trade-off and evaluated its underlying drivers using two species-specific parameters describing resource allocation strategies: tolerance of resource limitation and responsiveness of allocation to resource access. Globally, a canonical growth-mortality trade-off emerged, but the trade-off was strongly observed only in less disturbance-prone forests, which contained diverse resource allocation strategies. Only half of disturbance-prone forests, which lacked tolerant species, exhibited the trade-off. Supported by a theoretical model, our findings raise questions about whether the growth-mortality trade-off is a universally applicable organizing framework for understanding tropical forest community structure.
  14. Fung T, Chisholm RA, Anderson-Teixeira K, Bourg N, Brockelman WY, Bunyavejchewin S, et al.
    Ecol Lett, 2020 Jan;23(1):160-171.
    PMID: 31698546 DOI: 10.1111/ele.13412
    Among the local processes that determine species diversity in ecological communities, fluctuation-dependent mechanisms that are mediated by temporal variability in the abundances of species populations have received significant attention. Higher temporal variability in the abundances of species populations can increase the strength of temporal niche partitioning but can also increase the risk of species extinctions, such that the net effect on species coexistence is not clear. We quantified this temporal population variability for tree species in 21 large forest plots and found much greater variability for higher latitude plots with fewer tree species. A fitted mechanistic model showed that among the forest plots, the net effect of temporal population variability on tree species coexistence was usually negative, but sometimes positive or negligible. Therefore, our results suggest that temporal variability in the abundances of species populations has no clear negative or positive contribution to the latitudinal gradient in tree species richness.
  15. Slik JW, Arroyo-Rodríguez V, Aiba S, Alvarez-Loayza P, Alves LF, Ashton P, et al.
    Proc Natl Acad Sci U S A, 2015 Jun 16;112(24):7472-7.
    PMID: 26034279 DOI: 10.1073/pnas.1423147112
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
  16. Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, et al.
    Nature, 2023 Sep;621(7980):773-781.
    PMID: 37612513 DOI: 10.1038/s41586-023-06440-7
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
  17. Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, et al.
    Nature, 2023 Oct;622(7982):E2.
    PMID: 37752352 DOI: 10.1038/s41586-023-06654-9
  18. Mo L, Zohner CM, Reich PB, Liang J, de Miguel S, Nabuurs GJ, et al.
    Nature, 2023 Dec;624(7990):92-101.
    PMID: 37957399 DOI: 10.1038/s41586-023-06723-z
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
  19. Ma H, Crowther TW, Mo L, Maynard DS, Renner SS, van den Hoogen J, et al.
    Nat Plants, 2023 Nov;9(11):1795-1809.
    PMID: 37872262 DOI: 10.1038/s41477-023-01543-5
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links