Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Fornace KM, Drakeley CJ, William T, Espino F, Cox J
    Trends Parasitol, 2014 Nov;30(11):514-9.
    PMID: 25443854 DOI: 10.1016/j.pt.2014.09.001
    The potential applications of unmanned aerial vehicles (UAVs), or drones, have generated intense interest across many fields. UAVs offer the potential to collect detailed spatial information in real time at relatively low cost and are being used increasingly in conservation and ecological research. Within infectious disease epidemiology and public health research, UAVs can provide spatially and temporally accurate data critical to understanding the linkages between disease transmission and environmental factors. Using UAVs avoids many of the limitations associated with satellite data (e.g., long repeat times, cloud contamination, low spatial resolution). However, the practicalities of using UAVs for field research limit their use to specific applications and settings. UAVs fill a niche but do not replace existing remote-sensing methods.
  2. Jumail A, Liew TS, Salgado-Lynn M, Fornace KM, Stark DJ
    Primates, 2021 Jan;62(1):143-151.
    PMID: 32572697 DOI: 10.1007/s10329-020-00837-y
    A number of primate census techniques have been developed over the past half-century, each of which have advantages and disadvantages in terms of resources required by researchers (e.g., time and costs), availability of technologies, and effectiveness in different habitat types. This study aims to explore the effectiveness of a thermal imaging technique to estimate the group size of different primate species populations in a degraded riparian forest in the Lower Kinabatangan Wildlife Sanctuary (LKWS), Sabah. We compared this survey technique to the conventional visual counting method along the riverbank. For 38 days, a total of 138 primate groups were observed by thermal camera and visually throughout the study. Optimal conditions for the thermal camera were clear weather, not more than 100 m distance from the observer to the targeted area, boat speed ranging between 5 and 12 km/h, and early morning between 04:30 and 05:30 am. The limitations of the thermal cameras include the inability to identify individual species, sexes, age classes, and also to discern between animals closely aggregated (i.e., mothers with attached infants). Despite these limitations with the thermal camera technique, 1.78 times more primates were detected than counting by eye (p 
  3. Grignard L, Shah S, Chua TH, William T, Drakeley CJ, Fornace KM
    J Infect Dis, 2019 11 06;220(12):1946-1949.
    PMID: 31418017 DOI: 10.1093/infdis/jiz397
    To determine the presence and species composition of malaria infections, we screened a subset of samples collected during a cross-sectional survey in Northern Sabah, Malaysia using highly sensitive molecular techniques. Results identified 54 asymptomatic submicroscopic malaria infections, including a large cluster of Plasmodium falciparum and 3 P. knowlesi infections. We additionally identified 2 monoinfections with the zoonotic malaria Plasmodium cynomolgi, both in individuals reporting no history of forest activities or contact with macaques. Results highlight the need for improved surveillance strategies to detect these infections and determine public health impacts.
  4. Fornace KM, Drakeley CJ, Lindblade KA, Jelip J, Ahmed K
    Nat Commun, 2023 Sep 16;14(1):5750.
    PMID: 37717079 DOI: 10.1038/s41467-023-41546-6
    Increasing numbers of human zoonotic malaria cases are reported globally. Current malaria control measures cannot eliminate transmission from wildlife reservoirs, leaving many countries with no pathway to malaria elimination certification. New policies are needed to redefine elimination goals and certification.
  5. Grigg MJ, William T, Drakeley CJ, Jelip J, von Seidlein L, Barber BE, et al.
    BMJ Open, 2014 Aug 22;4(8):e006004.
    PMID: 25149186 DOI: 10.1136/bmjopen-2014-006004
    INTRODUCTION: Plasmodium knowlesi has long been present in Malaysia, and is now an emerging cause of zoonotic human malaria. Cases have been confirmed throughout South-East Asia where the ranges of its natural macaque hosts and Anopheles leucosphyrus group vectors overlap. The majority of cases are from Eastern Malaysia, with increasing total public health notifications despite a concurrent reduction in Plasmodium falciparum and P. vivax malaria. The public health implications are concerning given P. knowlesi has the highest risk of severe and fatal disease of all Plasmodium spp in Malaysia. Current patterns of risk and disease vary based on vector type and competence, with individual exposure risks related to forest and forest-edge activities still poorly defined. Clustering of cases has not yet been systematically evaluated despite reports of peri-domestic transmission and known vector competence for human-to-human transmission.

    METHODS AND ANALYSIS: A population-based case-control study will be conducted over a 2-year period at two adjacent districts in north-west Sabah, Malaysia. Confirmed malaria cases presenting to the district hospital sites meeting relevant inclusion criteria will be requested to enrol. Three community controls matched to the same village as the case will be selected randomly. Study procedures will include blood sampling and administration of household and individual questionnaires to evaluate potential exposure risks associated with acquisition of P. knowlesi malaria. Secondary outcomes will include differences in exposure variables between P. knowlesi and other Plasmodium spp, risk of severe P. knowlesi malaria, and evaluation of P. knowlesi case clustering. Primary analysis will be per protocol, with adjusted ORs for exposure risks between cases and controls calculated using conditional multiple logistic regression models.

    ETHICS: This study has been approved by the human research ethics committees of Malaysia, the Menzies School of Health Research, Australia, and the London School of Hygiene and Tropical Medicine, UK.

  6. Stark DJ, Fornace KM, Brock PM, Abidin TR, Gilhooly L, Jalius C, et al.
    Ecohealth, 2019 12;16(4):638-646.
    PMID: 30927165 DOI: 10.1007/s10393-019-01403-9
    Land-use changes can impact infectious disease transmission by increasing spatial overlap between people and wildlife disease reservoirs. In Malaysian Borneo, increases in human infections by the zoonotic malaria Plasmodium knowlesi are hypothesised to be due to increasing contact between people and macaques due to deforestation. To explore how macaque responses to environmental change impact disease risks, we analysed movement of a GPS-collared long-tailed macaque in a knowlesi-endemic area in Sabah, Malaysia, during a deforestation event. Land-cover maps were derived from satellite-based and aerial remote sensing data and models of macaque occurrence were developed to evaluate how macaque habitat use was influenced by land-use change. During deforestation, changes were observed in macaque troop home range size, movement speeds and use of different habitat types. Results of models were consistent with the hypothesis that macaque ranging behaviour is disturbed by deforestation events but begins to equilibrate after seeking and occupying a new habitat, potentially impacting human disease risks. Further research is required to explore how these changes in macaque movement affect knowlesi epidemiology on a wider spatial scale.
  7. Fornace KM, Abidin TR, Alexander N, Brock P, Grigg MJ, Murphy A, et al.
    Emerg Infect Dis, 2016 Feb;22(2):201-8.
    PMID: 26812373 DOI: 10.3201/eid2202.150656
    The zoonotic malaria species Plasmodium knowlesi has become the main cause of human malaria in Malaysian Borneo. Deforestation and associated environmental and population changes have been hypothesized as main drivers of this apparent emergence. We gathered village-level data for P. knowlesi incidence for the districts of Kudat and Kota Marudu in Sabah state, Malaysia, for 2008-2012. We adjusted malaria records from routine reporting systems to reflect the diagnostic uncertainty of microscopy for P. knowlesi. We also developed negative binomial spatial autoregressive models to assess potential associations between P. knowlesi incidence and environmental variables derived from satellite-based remote-sensing data. Marked spatial heterogeneity in P. knowlesi incidence was observed, and village-level numbers of P. knowlesi cases were positively associated with forest cover and historical forest loss in surrounding areas. These results suggest the likelihood that deforestation and associated environmental changes are key drivers in P. knowlesi transmission in these areas.
  8. Chan YL, Patterson CL, Priest JW, Stresman G, William T, Chua TH, et al.
    Front Public Health, 2022;10:924316.
    PMID: 36388287 DOI: 10.3389/fpubh.2022.924316
    BACKGROUND: Infectious diseases continue to burden populations in Malaysia, especially among rural communities where resources are limited and access to health care is difficult. Current epidemiological trends of several neglected tropical diseases in these populations are at present absent due to the lack of habitual and efficient surveillance. To date, various studies have explored the utility of serological multiplex beads to monitor numerous diseases simultaneously. We therefore applied this platform to assess population level exposure to six infectious diseases in Sabah, Malaysia. Furthermore, we concurrently investigated demographic and spatial risk factors that may be associated with exposure for each disease.

    METHODS: This study was conducted in four districts of Northern Sabah in Malaysian Borneo, using an environmentally stratified, population-based cross-sectional serological survey targeted to determine risk factors for malaria. Samples were collected between September to December 2015, from 919 villages totaling 10,100 persons. IgG responses to twelve antigens of six diseases (lymphatic filariasis- Bm33, Bm14, BmR1, Wb123; strongyloides- NIE; toxoplasmosis-SAG2A; yaws- Rp17 and TmpA; trachoma- Pgp3, Ct694; and giardiasis- VSP3, VSP5) were measured using serological multiplex bead assays. Eight demographic risk factors and twelve environmental covariates were included in this study to better understand transmission in this community.

    RESULTS: Seroprevalence of LF antigens included Bm33 (10.9%), Bm14+ BmR1 (3.5%), and Wb123 (1.7%). Seroprevalence of Strongyloides antigen NIE was 16.8%, for Toxoplasma antigen SAG2A was 29.9%, and Giardia antigens GVSP3 + GVSP5 was 23.2%. Seroprevalence estimates for yaws Rp17 was 4.91%, for TmpA was 4.81%, and for combined seropositivity to both antigens was 1.2%. Seroprevalence estimates for trachoma Pgp3 + Ct694 were 4.5%. Age was a significant risk factors consistent among all antigens assessed, while other risk factors varied among the different antigens. Spatial heterogeneity of seroprevalence was observed more prominently in lymphatic filariasis and toxoplasmosis.

    CONCLUSIONS: Multiplex bead assays can be used to assess serological responses to numerous pathogens simultaneously to support infectious disease surveillance in rural communities, especially where prevalences estimates are lacking for neglected tropical diseases. Demographic and spatial data collected alongside serosurveys can prove useful in identifying risk factors associated with exposure and geographic distribution of transmission.

  9. Brock PM, Fornace KM, Grigg MJ, Anstey NM, William T, Cox J, et al.
    Proc Biol Sci, 2019 Jan 16;286(1894):20182351.
    PMID: 30963872 DOI: 10.1098/rspb.2018.2351
    The complex transmission ecologies of vector-borne and zoonotic diseases pose challenges to their control, especially in changing landscapes. Human incidence of zoonotic malaria ( Plasmodium knowlesi) is associated with deforestation although mechanisms are unknown. Here, a novel application of a method for predicting disease occurrence that combines machine learning and statistics is used to identify the key spatial scales that define the relationship between zoonotic malaria cases and environmental change. Using data from satellite imagery, a case-control study, and a cross-sectional survey, predictive models of household-level occurrence of P. knowlesi were fitted with 16 variables summarized at 11 spatial scales simultaneously. The method identified a strong and well-defined peak of predictive influence of the proportion of cleared land within 1 km of households on P. knowlesi occurrence. Aspect (1 and 2 km), slope (0.5 km) and canopy regrowth (0.5 km) were important at small scales. By contrast, fragmentation of deforested areas influenced P. knowlesi occurrence probability most strongly at large scales (4 and 5 km). The identification of these spatial scales narrows the field of plausible mechanisms that connect land use change and P. knowlesi, allowing for the refinement of disease occurrence predictions and the design of spatially-targeted interventions.
  10. Byrne I, Aure W, Manin BO, Vythilingam I, Ferguson HM, Drakeley CJ, et al.
    Sci Rep, 2021 Jun 03;11(1):11810.
    PMID: 34083582 DOI: 10.1038/s41598-021-90893-1
    Land-use changes, such as deforestation and agriculture, can influence mosquito vector populations and malaria transmission. These land-use changes have been linked to increased incidence in human cases of the zoonotic malaria Plasmodium knowlesi in Sabah, Malaysian Borneo. This study investigates whether these associations are partially driven by fine-scale land-use changes creating more favourable aquatic breeding habitats for P. knowlesi anopheline vectors. Using aerial remote sensing data, we developed a sampling frame representative of all land use types within a major focus of P. knowlesi transmission. From 2015 to 2016 monthly longitudinal surveys of larval habitats were collected in randomly selected areas stratified by land use type. Additional remote sensing data on environmental variables, land cover and landscape configuration were assembled for the study site. Risk factor analyses were performed over multiple spatial scales to determine associations between environmental and spatial variables and anopheline larval presence. Habitat fragmentation (300 m), aspect (350 m), distance to rubber plantations (100 m) and Culex larval presence were identified as risk factors for Anopheles breeding. Additionally, models were fit to determine the presence of potential larval habitats within the areas surveyed and used to generate a time-series of monthly predictive maps. These results indicate that land-use change and topography influence the suitability of larval habitats, and may partially explain the link between P. knowlesi incidence and deforestation. The predictive maps, and identification of the spatial scales at which risk factors are most influential may aid spatio-temporally targeted vector control interventions.
  11. Maluda MCM, Johnson E, Robinson F, Jikal M, Fong SY, Saffree MJ, et al.
    PLOS Glob Public Health, 2024;4(1):e0002861.
    PMID: 38289918 DOI: 10.1371/journal.pgph.0002861
    Vibrio cholerae remains a notable public health challenge across Malaysia. Although the Malaysian state of Sabah is considered a cholera-affected area, gaps remain in understanding the epidemiological trends and spatial distribution of outbreaks. Therefore, to determine longitudinal and spatial trends in cholera cases data were obtained from the Sabah State Health Department for all notified cases of cholera between 2005-2020. A cholera outbreak is defined as one or more confirmed cases in a single locality with the evidence of local transmission. All records were geolocated to village level. Satellite-derived data and generalised linearized models were used to assess potential risk factors, including population density, elevation, and distance to the sea. Spatiotemporal clustering of reported cholera cases and zones of increased cholera risk were evaluated using the tau statistic (τ) at 550m, 5km and 10km distances. Over a 15-year period between 2005-2020, 2865 cholera cases were recorded in Sabah, with a mean incidence rate of 5.6 cases per 100,000 (95% CI: 3.4-7.9). From 2015-2020, 705 symptomatic cases and 727 asymptomatic cases were reported. Symptomatic cases primarily occurred in local Malaysian populations (62.6%, 441/705) and in children and adolescents under 15-years old (49.4%, 348/705). On average, cases were reported in areas with low population density (19.45 persons/km2), low elevations (19.45m) and near coastal areas. Spatiotemporal clustering of cholera cases was identified up to 3.5km, with increased village-level cholera risk within 500m and 5 days of initial case presentation to a health facility (Risk Ratio = 9.7, 95% CI: 7.5-12.4). Cholera incidence has high spatial and temporal heterogeneity within Sabah, with some districts experiencing repeated outbreaks. Cholera cases clustered across space and time, with village-level risk of cholera highest within 5 days and within close proximity to primary case villages, suggesting local transmission.
  12. Grigg MJ, Cox J, William T, Jelip J, Fornace KM, Brock PM, et al.
    Lancet Planet Health, 2017 Jun 09;1(3):e97-e104.
    PMID: 28758162 DOI: 10.1016/S2542-5196(17)30031-1
    BACKGROUND: The emergence of human malaria due to the monkey parasite Plasmodium knowlesi threatens elimination efforts in southeast Asia. Changes in land use are thought to be driving the rise in reported P knowlesi cases, but the role of individual-level factors is unclear. To address this knowledge gap we assessed human and environmental factors associated with zoonotic knowlesi malaria risk.

    METHODS: We did this population-based case-control study over a 2 year period in the state of Sabah in Malaysia. We enrolled cases with microscopy-positive, PCR-confirmed malaria who presented to two primary referral hospitals serving the adjacent districts of Kudat and Kota Marudu. We randomly selected three malaria-negative community controls per case, who were matched by village within 2 weeks of case detection. We obtained questionnaire data on demographics, behaviour, and residential malaria risk factors, and we also assessed glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. We used conditional logistic regression models to evaluate exposure risk between P knowlesi cases and controls, and between P knowlesi and human-only Plasmodium spp malaria cases.

    FINDINGS: From Dec 5, 2012, to Jan 30, 2015, we screened 414 patients and subsequently enrolled 229 cases with P knowlesi malaria mono-infection and 91 cases with other Plasmodium spp infection. We enrolled 953 matched controls, including 683 matched to P knowlesi cases and 270 matched to non-P knowlesi cases. Age 15 years or older (adjusted odds ratio [aOR] 4·16, 95% CI 2·09-8·29, p<0·0001), male gender (4·20, 2·54-6·97, p<0·0001), plantation work (3·50, CI, 1·34-9·15, p=0·011), sleeping outside (3·61, 1·48-8·85, p=0·0049), travel (2·48, 1·45-4·23, p=0·0010), being aware of the presence of monkeys in the past 4 weeks (3·35, 1·91-5·88, p<0·0001), and having open eaves or gaps in walls (2·18, 1·33-3·59, p=0·0021) were independently associated with increased risk of symptomatic P knowlesi infection. Farming occupation (aOR 1·89, 95% CI 1·07-3·35, p=0·028), clearing vegetation (1·89, 1·11-3·22, p=0·020), and having long grass around the house (2·08, 1·25-3·46, p=0·0048) increased risk for P knowlesi infection but not other Plasmodium spp infection. G6PD deficiency seemed to be protective against P knowlesi (aOR 0·20, 95% CI 0·04-0·96, p=0·045), as did residual insecticide spraying of household walls (0·52, 0·31-0·87, p=0·014), with the presence of young sparse forest (0·35, 0·20-0·63, p=00040) and rice paddy around the house (0·16, 0·03-0·78, 0·023) also associated with decreased risk.

    INTERPRETATION: Adult men working in agricultural areas were at highest risk of knowlesi malaria, although peri-domestic transmission also occurrs. Human behavioural factors associated with P knowlesi transmission could be targeted in future public health interventions.

    FUNDING: United Kingdom Medical Research Council, Natural Environment Research Council, Economic and Social Research Council, and Biotechnology and Biosciences Research Council.

  13. Fornace KM, Surendra H, Abidin TR, Reyes R, Macalinao MLM, Stresman G, et al.
    Int J Health Geogr, 2018 06 18;17(1):21.
    PMID: 29914506 DOI: 10.1186/s12942-018-0141-0
    BACKGROUND: Identifying fine-scale spatial patterns of disease is essential for effective disease control and elimination programmes. In low resource areas without formal addresses, novel strategies are needed to locate residences of individuals attending health facilities in order to efficiently map disease patterns. We aimed to assess the use of Android tablet-based applications containing high resolution maps to geolocate individual residences, whilst comparing the functionality, usability and cost of three software packages designed to collect spatial information.

    RESULTS: Using Open Data Kit GeoODK, we designed and piloted an electronic questionnaire for rolling cross sectional surveys of health facility attendees as part of a malaria elimination campaign in two predominantly rural sites in the Rizal, Palawan, the Philippines and Kulon Progo Regency, Yogyakarta, Indonesia. The majority of health workers were able to use the tablets effectively, including locating participant households on electronic maps. For all households sampled (n = 603), health facility workers were able to retrospectively find the participant household using the Global Positioning System (GPS) coordinates and data collected by tablet computers. Median distance between actual house locations and points collected on the tablet was 116 m (IQR 42-368) in Rizal and 493 m (IQR 258-886) in Kulon Progo Regency. Accuracy varied between health facilities and decreased in less populated areas with fewer prominent landmarks.

    CONCLUSIONS: Results demonstrate the utility of this approach to develop real-time high-resolution maps of disease in resource-poor environments. This method provides an attractive approach for quickly obtaining spatial information on individuals presenting at health facilities in resource poor areas where formal addresses are unavailable and internet connectivity is limited. Further research is needed on how to integrate these with other health data management systems and implement in a wider operational context.

  14. Fornace KM, Alexander N, Abidin TR, Brock PM, Chua TH, Vythilingam I, et al.
    Elife, 2019 10 22;8.
    PMID: 31638575 DOI: 10.7554/eLife.47602
    Human movement into insect vector and wildlife reservoir habitats determines zoonotic disease risks; however, few data are available to quantify the impact of land use on pathogen transmission. Here, we utilise GPS tracking devices and novel applications of ecological methods to develop fine-scale models of human space use relative to land cover to assess exposure to the zoonotic malaria Plasmodium knowlesi in Malaysian Borneo. Combining data with spatially explicit models of mosquito biting rates, we demonstrate the role of individual heterogeneities in local space use in disease exposure. At a community level, our data indicate that areas close to both secondary forest and houses have the highest probability of human P. knowlesi exposure, providing quantitative evidence for the importance of ecotones. Despite higher biting rates in forests, incorporating human movement and space use into exposure estimates illustrates the importance of intensified interactions between pathogens, insect vectors and people around habitat edges.
  15. Fornace KM, Nuin NA, Betson M, Grigg MJ, William T, Anstey NM, et al.
    J Infect Dis, 2016 Mar 01;213(5):784-7.
    PMID: 26433222 DOI: 10.1093/infdis/jiv475
    Although asymptomatic carriage of human malaria species has been widely reported, the extent of asymptomatic, submicroscopic Plasmodium knowlesi parasitemia is unknown. In this study, samples were obtained from individuals residing in households or villages of symptomatic malaria cases with the aim of detecting submicroscopic P. knowlesi in this population. Four published molecular assays were used to confirm the presence of P. knowlesi. Latent class analysis revealed that the estimated proportion of asymptomatic individuals was 6.9% (95% confidence interval, 5.6%-8.4%). This study confirms the presence of a substantial number of asymptomatic monoinfections across all age groups; further work is needed to estimate prevalence in the wider community.
  16. Naserrudin NA, Jiee SF, Habil B, Jantim A, Mohamed AFB, Dony JJF, et al.
    Malar J, 2023 Oct 03;22(1):292.
    PMID: 37789320 DOI: 10.1186/s12936-023-04693-1
    BACKGROUND: Since 2018, no indigenous human malaria cases has been reported in Malaysia. However, during the recent COVID-19 pandemic the World Health Organization is concerned that the pandemic might erode the success of malaria control as there are reports of increase malaria cases in resource limited countries. Little is known how the COVID-19 pandemic has impacted malaria in middle-income countries like Malaysia. Here the public health response to a Plasmodium malariae outbreak occurred in a village in Sabah state, Malaysia, during a COVID-19 movement control order is reported.

    METHODS: An outbreak was declared following the detection of P. malariae in July 2020 and active case detection for malaria was performed by collecting blood samples from residents residing within 2 km radius of Moyog village. Vector prevalence and the efficacy of residual insecticides were determined. Health awareness programmes were implemented to prevent future outbreaks. A survey was conducted among villagers to understand risk behaviour and beliefs concerning malaria.

    RESULTS: A total of 5254 blood samples collected from 19 villages. Among them, 19 P. malariae cases were identified, including the index case, which originated from a man who returned from Indonesia. His return from Indonesia and healthcare facilities visit coincided with the movement control order during COVID-19 pandemic when the healthcare facilities stretched its capacity and only serious cases were given priority. Despite the index case being a returnee from a malaria endemic area presenting with mild fever, no malaria test was performed at local healthcare facilities. All cases were symptomatic and uncomplicated except for a pregnant woman with severe malaria. There were no deaths; all patients recovered following treatment with artemether-lumefantrine combination therapy. Anopheles balabacensis and Anopheles barbirostris were detected in ponds, puddles and riverbeds. The survey revealed that fishing and hunting during night, and self-treatment for mild symptoms contributed to the outbreak. Despite the index case being a returnee from a malaria-endemic area presenting with mild fever, no malaria test was performed at local healthcare facilities.

    CONCLUSION: The outbreak occurred during a COVID-19 movement control order, which strained healthcare facilities, prioritizing only serious cases. Healthcare workers need to be more aware of the risk of malaria from individuals who return from malaria endemic areas. To achieve malaria elimination and prevention of disease reintroduction, new strategies that include multisectoral agencies and active community participation are essential for a more sustainable malaria control programme.

  17. Naserrudin NA, Lin PYP, Monroe A, Culleton R, Baumann SE, Sato S, et al.
    BMC Public Health, 2023 Jul 10;23(1):1316.
    PMID: 37430300 DOI: 10.1186/s12889-023-16173-x
    BACKGROUND: The control of Plasmodium knowlesi malaria remains challenging due to the presence of macaque monkeys and predominantly outdoor-biting Anopheles mosquitoes around human settlements. This study aims to explore the barriers and facilitators related to prevention of mosquito bites among rural communities living in Sabah, Malaysia using the participatory visual method, photovoice.

    METHODS: From January through June 2022, 26 participants were recruited from four villages in Kudat, Sabah, using purposive sampling. Participants were male and female villagers, aged > 18 years old. After photovoice training in the villages, participants documented facilitators of and barriers related to avoiding mosquito bites using their own smartphone cameras, and provided narratives for their photos. Twelve Focus Group Discussions (FGDs) sessions in three rounds were held to share and discuss the photos, and to address challenges to the avoidance of mosquito bites. All discussions were conducted in the Sabah Malay dialect, and were video and audio recorded, transcribed, and analyzed using reflexive thematic analysis. The Ideation Model, a meta-theoretical model of behaviour change, underpinned this study.

    RESULTS: The most common types of barriers identified by participants included (I) intrapersonal factors such as low perceived threat of malaria, (II) livelihood and lifestyle activities consisting of the local economy and socio-cultural activities, and (III) physical and social environment. The facilitators were categorized into (I) intrapersonal reasons, including having the opportunity to stay indoors, especially women who are housewives, (II) social support by the households, neaighbours and healthcare workers, and (III) support from healthcare services and malaria awareness program. Participants emphasized the importance of stakeholder's support in implementing feasible and affordable approaches to P. knowlesi malaria control.

    CONCLUSION: Results provided insights regarding the challenges to preventing P. knowlesi malaria in rural Kudat, Sabah. The participation of communities in research was valuable in expanding knowledge of local challenges and highlighting possible ways to overcome barriers. These findings may be used to improve strategies for zoonotic malaria control, which is critical for advancing social change and minimizing health disparities in malaria prevention.

  18. Fornace KM, Topazian HM, Routledge I, Asyraf S, Jelip J, Lindblade KA, et al.
    Nat Commun, 2023 Jun 01;14(1):2945.
    PMID: 37263994 DOI: 10.1038/s41467-023-38476-8
    Reported incidence of the zoonotic malaria Plasmodium knowlesi has markedly increased across Southeast Asia and threatens malaria elimination. Nonzoonotic transmission of P. knowlesi has been experimentally demonstrated, but it remains unknown whether nonzoonotic transmission is contributing to increases in P. knowlesi cases. Here, we adapt model-based inference methods to estimate RC, individual case reproductive numbers, for P. knowlesi, P. falciparum and P. vivax human cases in Malaysia from 2012-2020 (n = 32,635). Best fitting models for P. knowlesi showed subcritical transmission (RC  1) was estimated historically for P. falciparum and P. vivax, with declines in RC estimates observed over time consistent with local elimination. Together, this suggests sustained nonzoonotic P. knowlesi transmission is highly unlikely and that new approaches are urgently needed to control spillover risks.
  19. Fornace KM, Zorello Laporta G, Vythilingham I, Chua TH, Ahmed K, Jeyaprakasam NK, et al.
    Lancet Infect Dis, 2023 Dec;23(12):e520-e532.
    PMID: 37454671 DOI: 10.1016/S1473-3099(23)00298-0
    Simian malaria from wild non-human primate populations is increasingly recognised as a public health threat and is now the main cause of human malaria in Malaysia and some regions of Brazil. In 2022, Malaysia became the first country not to achieve malaria elimination due to zoonotic simian malaria. We review the global distribution and drivers of simian malaria and identify priorities for diagnosis, treatment, surveillance, and control. Environmental change is driving closer interactions between humans and wildlife, with malaria parasites from non-human primates spilling over into human populations and human malaria parasites spilling back into wild non-human primate populations. These complex transmission cycles require new molecular and epidemiological approaches to track parasite spread. Current methods of malaria control are ineffective, with wildlife reservoirs and primarily outdoor-biting mosquito vectors urgently requiring the development of novel control strategies. Without these, simian malaria has the potential to undermine malaria elimination globally.
  20. Byrne I, William T, Chua TH, Patterson C, Hall T, Tan M, et al.
    Sci Rep, 2023 Aug 10;13(1):12998.
    PMID: 37563178 DOI: 10.1038/s41598-023-39670-w
    Malaysia has reported no indigenous cases of P. falciparum and P. vivax for over 3 years. When transmission reaches such low levels, it is important to understand the individuals and locations where exposure risks are high, as they may be at greater risk in the case of a resurgence of transmission. Serology is a useful tool in low transmission settings, providing insight into exposure over longer durations than PCR or RDT. We ran blood samples from a 2015 population-based survey in northern Sabah, Malaysian Borneo on a multiplex bead assay. Using supervised machine learning methods, we characterised recent and historic exposure to Plasmodium falciparum and P. vivax and found recent exposure to P. falciparum to be very low, with exposure to both species increasing with age. We performed a risk-factor assessment on environmental, behavioural, demographic and household factors, and identified forest activity and longer travel times to healthcare as common risk-factors for exposure to P. falciparum and P. vivax. In addition, we used remote-sensing derived data and geostatistical models to assess environmental and spatial associations with exposure. We created predictive maps of exposure to recent P. falciparum in the study area and showed 3 clear foci of exposure. This study provides useful insight into the environmental, spatial and demographic risk factors for P. falciparum and P. vivax at a period of low transmission in Malaysian Borneo. The findings would be valuable in the case of resurgence of human malarias in the region.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links