Displaying all 17 publications

Abstract:
Sort:
  1. Gan HY, Gan HM, Lee YP, Austin CM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):3985-3986.
    PMID: 25543913
    The complete mitochondrial genome of the Bass yabby Trypaea australiensis was obtained from a partial genome scan using the MiSeq sequencing system. The T. australiensis mitogenome is 16,821 bp in length (70.25% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a putative 1977 bp non-coding AT-rich region. This Trypaea mitogenome sequence is the 5th for the family Callianassidae and represents a new gene order for the Decapoda involving protein-coding, rRNA and tRNA genes and the control region.
  2. Gan HY, Gan HM, Lee YP, Austin CM
    PMID: 25693708 DOI: 10.3109/19401736.2015.1007311
    The mitochondrial genome of the rock pool prawn (Palaemon serenus), is sequenced, making it the third for genera of the family Palaemonidae and the first for the genus Palaemon. The mitogenome is 15,967 base pairs in length and comprises 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The P. serenus mitogenome has an AT bias of 58.97% and a base composition of 29.79% for T, 24.14% for C, 29.18% for A, and 16.89% for G. The mitogenome gene order of P. serenus is identical to Exopalaemon carinicauda.
  3. Gan HY, Gan HM, Lee YP, Austin CM
    PMID: 25693707 DOI: 10.3109/19401736.2015.1007312
    The mitochondrial genome sequence of the Australian freshwater shrimp, Paratya australiensis, is presented, which is the fourth for genera of the superfamily Atyoidea and the first atyid from the southern hemisphere. The base composition of the P. australiensis, mitogenome is 33.55% for T, 18.24% for C, 35.16% for A, and 13.06% for G, with an AT bias of 71.58%. It has a mitogenome of 15,990 base pairs comprised of 13 protein-coding, 2 ribosomal subunit and 22 transfer RNAs genes and a non-coding AT-rich region. The mitogenome gene order for the species is typical for atyid shrimps, which conform to the primitive pan crustacean model.
  4. Austin CM, Tan MH, Gan HY, Gan HM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4176-4177.
    PMID: 25630729
    Next-Gen sequencing was used to recover the complete mitochondrial genome of Cherax tenuimanus. The mitogenome consists of 15,797 base pairs (68.14% A + T content) containing 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs, and a 779 bp non-coding AT-rich region. Mitogenomes have now been recovered for all six species of Cherax native to Western Australia.
  5. Gan HM, Gan HY, Ahmad NH, Aziz NA, Hudson AO, Savka MA
    PMID: 25621282 DOI: 10.3389/fcimb.2014.00188
    Here we report the draft genomes and annotation of four N-acyl homoserine lactone (AHL)-producing members from the family Sphingomonadaceae. Comparative genomic analyses of 62 Sphingomonadaceae genomes were performed to gain insights into the distribution of the canonical luxI/R-type quorum sensing (QS) network within this family. Forty genomes contained at least one luxR homolog while the genome of Sphingobium yanoikuyae B1 contained seven Open Reading Frames (ORFs) that have significant homology to that of luxR. Thirty-three genomes contained at least one luxI homolog while the genomes of Sphingobium sp. SYK6, Sphingobium japonicum, and Sphingobium lactosutens contained four luxI. Using phylogenetic analysis, the sphingomonad LuxR homologs formed five distinct clades with two minor clades located near the plant associated bacteria (PAB) LuxR solo clade. This work for the first time shows that 13 Sphingobium and one Sphingomonas genome(s) contain three convergently oriented genes composed of two tandem luxR genes proximal to one luxI (luxR-luxR-luxI). Interestingly, luxI solos were identified in two Sphingobium species and may represent species that contribute to AHL-based QS system by contributing AHL molecules but are unable to perceive AHLs as signals. This work provides the most comprehensive description of the luxI/R circuitry and genome-based taxonomical description of the available sphingomonad genomes to date indicating that the presence of luxR solos and luxI solos are not an uncommon feature in members of the Sphingomonadaceae family.
  6. Grandjean F, Tan MH, Gan HY, Gan HM, Austin CM
    PMID: 25738217 DOI: 10.3109/19401736.2015.1018207
    The Austropotamobius pallipes complete mitogenome has been recovered using Next-Gen sequencing. Our sample of A. pallipes has a mitogenome of 15,679 base pairs (68.44% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 877 bp non-coding AT-rich region. This is the first mitogenome sequenced for a crayfish from the family Astacidae and the 4(th) for northern hemisphere genera.
  7. Gan HM, Gan HY, Tan MH, Penny SS, Willan RC, Austin CM
    PMID: 25648928 DOI: 10.3109/19401736.2015.1007355
    The complete mitochondrial genome of the commercially and ecologically important and internationally vulnerable giant clam Tridacna squamosa was recovered by genome skimming using the MiSeq platform. The T. squamosa mitogenome has 20,930 base pairs (62.35% A+T content) and is made up of 12 protein-coding genes, 2 ribosomal subunit genes, 24 transfer RNAs, and a 2594 bp non-coding AT-rich region. The mitogenome has a relatively large insertion in the atp6 gene. This is the first mitogenome to be sequenced from the genus Tridacna, and the family Tridacnidae and represents a new gene order.
  8. Gan HM, Tan MH, Gan HY, Lee YP, Austin CM
    PMID: 25648918 DOI: 10.3109/19401736.2015.1007325
    The clawed lobster Nephrops norvegicus is an important commercial species in European waters. We have sequenced the complete mitochondrial genome of the species from a partial genome scan using Next-Gen sequencing. The N. norvegicus has a mitogenome of 16,132 base pairs (71.22% A+ T content) comprising 13 protein-coding genes, 2 ribosomal subunit genes, 21 transfer RNAs, and a putative 1259 bp non-coding AT-rich region. This mitogenome is the second fully characterized for the family Nephropidae and the first for the genus Nephrops. The mitogenome gene order is identical to the Maine lobster, Homarus americanus with the exception of the possible loss of the trnI gene.
  9. Gan HM, Gan HY, Lee YP, Grandjean F, Austin CM
    PMID: 25648916 DOI: 10.3109/19401736.2015.1007326
    The invasive freshwater crayfish Orconectes limosus mitogenome was recovered by genome skimming. The mitogenome is 16,223 base pairs in length consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The O. limosus mitogenome has an AT bias of 71.37% and base composition of 39.8% for T, 10.3% for C, 31.5% for A, and 18.4% for G. The mitogene order is identical to two other genera of northern hemisphere crayfish that have been sequenced for this organelle.
  10. Austin CM, Tan MH, Croft LJ, Meekan MG, Gan HY, Gan HM
    PMID: 25693694 DOI: 10.3109/19401736.2015.1007348
    The complete mitogenome of the ray Taeniura lymma was recovered from genome skimming using the HiSeq sequencing system. The T. lymma mitogenome has 17,652 base pairs (59.13% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a 1906 bp non-coding AT-rich region. This mitogenome sequence is the second for a ray from Australian waters, the first for the genus Taeniura and the ninth for the family Dasyatidae.
  11. Gan HY, Gan HM, Tan MH, Lee YP, Austin CM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4099-4100.
    PMID: 25629489
    The complete mitochondrial genome of the hermit crab Clibanarius infraspinatus was recovered by genome skimming using Next-Gen sequencing. The Clibanarius infraspinatus mitogenome has 16,504 base pairs (67.94% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a putative 1500 bp non-coding AT-rich region. The Clibanarius infraspinatus mitogenome sequence is the first for the family Diogenidae and the second for the superfamily Paguroidea and exhibits a translocation of the ND3 gene not previously reported for the Decapoda.
  12. Gan HY, Gan HM, Tarasco AM, Busairi NI, Barton HA, Hudson AO, et al.
    Genome Announc, 2014;2(6).
    PMID: 25377711 DOI: 10.1128/genomeA.01133-14
    Here, we report the whole-genome sequences and annotation of five oligotrophic bacteria from two sites within the Lechuguilla Cave in the Carlsbad Caverns National Park, NM. Three of the five genomes contain an acyl-homoserine lactone signal synthase ortholog (luxI) that is involved in cell-to-cell communication via quorum sensing.
  13. Danish-Daniel M, Gan HY, Gan HM, Saari NA, Usup G
    Genome Announc, 2014;2(5).
    PMID: 25301654 DOI: 10.1128/genomeA.01015-14
    Nitratireductor basaltis strain UMTGB225 is a Gram-negative bacterium isolated from a marine tunicate found in Bidong Island, Terengganu, Malaysia. In this study, the genome of Nitratireductor basaltis UMTGB225 was sequenced to gain insight into the role of this bacterium and its association with tunicate hosts in a coral reef habitat.
  14. Gan HM, Tan MH, Gan HY, Lee YP, Schultz MB, Austin CM
    PMID: 24845437 DOI: 10.3109/19401736.2014.919460
    The mitogenome of the black yabby, Geocharax gracilis, was sequenced using the MiSeq Personal Sequencer. It has 15,924 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 23 transfer RNAs, and a non-coding AT-rich region. The base composition of G. gracilis mitogenome is 32.18% for T, 22.32% for C, 34.83% for A, and 10.68% for G, with an AT bias of 67.01%. The mitogenome gene order is typical for that of parastacid crayfish with the exception of some minor rearrangements involving tRNA genes.
  15. Gan HY, Noor ME, Saari NA, Musa N, Mustapha B, Usup G, et al.
    Genome Announc, 2015;3(2).
    PMID: 25814609 DOI: 10.1128/genomeA.00210-15
    Vibrio campbellii strain UMTGB204 was isolated from a green barrel tunicate. The genome of this strain comprises 5,652,224 bp with 5,014 open reading frames, 9 rRNAs, and 116 tRNAs. It contains genes related to virulence and environmental tolerance. Gene clusters for the biosynthesis of nonribosomal peptides and bacteriocin were also identified.
  16. Gan HY, Gan HM, Savka MA, Triassi AJ, Wheatley MS, Smart LB, et al.
    Genome Announc, 2014;2(3).
    PMID: 24812212 DOI: 10.1128/genomeA.00288-14
    Shrub willow, Salix spp. and hybrids, is an important bioenergy crop. Here we report the whole-genome sequences and annotation of 13 endophytic bacteria from stem tissues of Salix purpurea grown in nature and from commercial cultivars and Salix viminalis × Salix miyabeana grown in bioenergy fields in Geneva, New York.
  17. Torres ME, Cox T, Hong WL, McManus J, Sample JC, Destrigneville C, et al.
    Geobiology, 2015 Nov;13(6):562-80.
    PMID: 26081483 DOI: 10.1111/gbi.12146
    We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca(2+) and Cl(1-) are largely supplied via diffusion from a high-salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm(-3) day(-1) at ~400 mbsf. We also note the disappearance of δ-Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g(-1)) and manganese (up to 20 μmol g(-1)). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate-reducing pathways. The detection of the manganese- and iron-reducer γ-Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links