Displaying all 2 publications

Abstract:
Sort:
  1. Wooldridge G, O'Brien N, Muttalib F, Abbas Q, Adabie Appiah J, Baker T, et al.
    Andes Pediatr, 2021 Dec;92(6):954-962.
    PMID: 35506809 DOI: 10.32641/andespediatr.v92i6.4030
    The Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-associated Organ Dysfunction in Children was released in 2020 and is intended for use in all global settings that care for children with sepsis. However, practitioners managing children with sep sis in resource-limited settings (RLS) face several challenges and disease patterns not experienced by those in resource-rich settings. Based upon our collective experience from RLS, we aimed to reflect on the difficulties of implementing the international guidelines. We believe there is an urgent need for more evidence from RLS on feasible, efficacious approaches to the management of sepsis and septic shock that could be included in future context-specific guidelines.
  2. Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, et al.
    Nature, 2021 Sep;597(7874):77-81.
    PMID: 34471275 DOI: 10.1038/s41586-021-03740-8
    The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links