Displaying all 15 publications

  1. Gopinath VK, Muda WA
    PMID: 15906679
    Feeding difficulties in cleft lip and palate (CLP) infants is commonly observed and is the most traumatic experience the family has to face. These infants are undernourished and have compromised growth. The purpose of this study was to 1) assess general health and growth parameters in children with CLP and in normal children; and 2) investigate the feeding methods of CLP infants and normal infants. A total of 221 children from birth to six years of both sexes, with CLP (60 children) and normal (161 children) were selected. The CLP and normal children were divided into three subgroups by age. The practice of feeding the infants in subgroup I was assessed using standard piloted questionnaires. The assessment of growth was done at baseline and at six months in all the subgroups.The general well being of the children was assessed by noting the number of common infections. Results showed that a significantly higher percentage of mothers with normal babies (p < 0.01) had a positive attitude towards breast feeding. When compared to normal children, CLP children were more susceptible to infections (p < 0.05) and measured significantly lower on the height growth curve(p < 0.05). Hence, height can be used to monitor growth in CLP children.
  2. Gopinath VK, Musa M, Samsudin AR, Sosroseno W
    PMID: 16997796
    The role of protein kinase C (PKC) in hydroxyapatite (HA)-induced phagocytosis by RAW 264.7 cells was investigated. The cells were incubated with HA particles at various incubation time and the levels of PKC activity were determined from the cell lysate. To determine the role of PKC, particles were incubated with the cells pretreated with the various concentrations of bisindolylmaleimide, a PKC inhibitor, and phagocytosis was then assessed at 60 min. Latex beads were used as a control. Our results showed that following incubation with HA particles, the levels of PKC activity in RAW264.7 cells was highest at 7 min and then decreased to reach the baseline levels of the controls at 30 min. Pretreatment of the cells with bisindolylmaleimide significantly reduced phagocytosis of HA particles in a dose-dependent pattern. The results of our present study suggest therefore that ingestion of HA by RAW264.7 cells may depend on PKC activity that may act in the early stages of phagocytosis.
  3. Gopinath VK, Ling KT, Haziani KN, Ismail NM
    J Clin Pediatr Dent, 2008;33(1):39-42.
    PMID: 19093650
    This study reports on the predisposing factors and prevalence of fractured anterior teeth among 12 and 16 years-old school children in Kubang Kerian, Kelantan, West Malaysia.
  4. Gopinath VK, Musa M, Samsudin AR, Lalitha P, Sosroseno W
    Arch Oral Biol, 2006 Apr;51(4):339-44.
    PMID: 16214104
    The aim of this study was to determine the role of nitric oxide (NO) in hydroxyapatite (HA)-induced phagocytosis by a murine macrophage cell line (RAW264.7). The cells were incubated with HA particles at various incubation time and phagocytosis was assessed using phagocytic index (PI). NO production from the culture supernatants was determined by the Griess reagent. The inducible nitric oxide synthase (iNOS) expression was determined by Western blot. The particles were also incubated with cells pretreated with various concentrations of L-N(6)-(1-iminoethyl) lysine hydrochloride (L-NIL) or L-arginine. Latex beads were used as a control. Our results showed that macrophage phagocytosis induced by HA was higher than that induced by the beads. However, NO production by HA-stimulated cells was lower than that by bead-stimulated cells. iNOS expression in both bead- and HA-stimulated cells was observed expressed at 7, 15, 30, and 60 min. l-Arginine enhanced but l-NIL inhibited both phagocytosis and NO production by HA-stimulated cells. The results of the present study suggest that nitric oxide may play a crucial role in HA-induced phagocytosis by RAW264.7 cells.
  5. Gopinath V, Saravanan S, Al-Maleki AR, Ramesh M, Vadivelu J
    Biomed Pharmacother, 2018 Nov;107:96-108.
    PMID: 30086465 DOI: 10.1016/j.biopha.2018.07.136
    Natural polysaccharides are renewable with a high degree of biocompatibility, biodegradability, and ability to mimic the natural extracellular matrix (ECM) microenvironment. Comprehensive investigations of polysaccharides are essential for our fundamental understanding of exploiting its potential as bio-composite, nano-conjugate and in pharmaceutical sectors. Polysaccharides are considered to be superior to other polymers, for its ease in tailoring, bio-compatibility, bio-activity, homogeneity and bio-adhesive properties. The main focus of this review is to spotlight the new advancements and challenges concerned with surface modification, binding domains, biological interaction with the conjugate including stability, polydispersity, and biodegradability. In this review, we have limited our survey to three essential polysaccharides including cellulose, starch, and glycogen that are sourced from plants, microbes, and animals respectively are reviewed. We also present the polysaccharides which have been extensively modified with the various types of conjugates for combating last-ditch pharmaceutical challenges.
  6. Vasantharaja R, Stanley Abraham L, Gopinath V, Hariharan D, Smita KM
    Int J Biol Macromol, 2019 Mar 01;124:50-59.
    PMID: 30445094 DOI: 10.1016/j.ijbiomac.2018.11.104
    In this present study, isolation, characterization and protective effect of sulfated polysaccharide (SP) isolated from the brown algae Padina gymnospora was investigated. SP was isolated and characterized through FT-IR, 1H NMR, TGA, GC-MS and CHN analysis. The molecular weight of SP was found to be 16 kDa. The isolated SP contains 29.4 ± 0.35% of sulfate, 27 ± 0.11% of fucose, 0.05 ± 0.12% of protein, respectively. Furthermore, SP exhibits its excellent radical scavenging effects were evaluated by DPPH, ABTS radical scavenging and reducing power assays. Moreover, pretreatment with SP significantly mitigates H2O2 induced cytotoxicity in L-929 cells in a dose dependent manner. Furthermore, SP pretreatment ameliorates oxidative stress induced apoptosis and DNA damage, alleviates the generation of intracellular reactive oxygen species (ROS) and restores mitochondrial membrane potential (MMP) in L-929 cells through its antioxidant potential. Together, these results suggest that SP can be exploited as a natural antioxidant in the food and pharmaceutical industries.
  7. Saravanan M, Gopinath V, Chaurasia MK, Syed A, Ameen F, Purushothaman N
    Microb Pathog, 2018 Feb;115:57-63.
    PMID: 29248514 DOI: 10.1016/j.micpath.2017.12.039
    Zinc oxide nanoparticles (ZnONPs) exhibit abundant biomedical applications. Anisotropic ZnONPs with a defined shape and size were synthesized using Bacillus megaterium (NCIM 2326) cell free extract as a bio-reductant. The study investigated the multidimensional effect of ZnONPs on Helicobacter pylori strains and assessed its biosafety in normal human mesenchymal stem cells (hMSc). The highly stable ZnONPs were produced using B. megaterium and Zinc nitrate as a precursor. The phase of ZnONPs formation and structural characterization were performed by UV- visible (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and Field Emission Scanning electron microscopy (FESEM) analysis. Furthermore, the ZnONPs exhibited higher biocompatibility against human mesenchymal stem cells (hMSC) and proved to be potentially safe in mammalian cells. Corroborating the current investigation, we described the anti-H. Pylori dosage of ZnONPs was safe to hMSC and could efficiently use as nano-antibiotic.
  8. MubarakAli D, LewisOscar F, Gopinath V, Alharbi NS, Alharbi SA, Thajuddin N
    Microb Pathog, 2018 Jan;114:323-327.
    PMID: 29229504 DOI: 10.1016/j.micpath.2017.11.043
    Chitosan is the second most abundant polymer obtained from the byproduct of seafood. Chitosan and its derivatives and chitosan loaded drugs are the recent area of interest against microbial pathogenesis. The cationic chitosan nanoparticles (ChNPs) interact with the anionic surfaces of the microbial cell membrane, which promotes antimicrobial activity. Although, ChNPs are potential against pathogenic microbes, selection of adaptable, suitable and cost effective synthesis method is much important. In the present study, ChNPs were synthesized adopting ionic gelation using sodium tripolyphosphate as a cross linking agent and characterized by FTIR, DLS, SEM and TEM analysis. ChNPs were investigated for antimicrobial activity against bacterial (Escherichia coli and Staphylococcus aureus) and fungal (Candida albicans) pathogens. ChNPs showed bactericidal activity at the lower minimum inhibitory concentration of about 40-80 μg mL-1. Interestingly, ChNPs exhibits biocompatible antioxidant property by inhibiting DPPH free radicals at 76% and also proven to be a potential candidate against the microbial pathogenesis with an inevitable applications in biomedicine.
  9. Gopinath VK, Al-Salihi KA, Yean CY, Ann MC, Ravichandran M
    J Clin Pediatr Dent, 2004;28(4):319-22.
    PMID: 15366620
    Amelogenesis imperfecta (AI) is a hereditary disorder resulting in generalized defects in the enamel. The case reported here is of a seven-year-old male child with yellow color of all his teeth. Two of his primary molars were extracted due to dental abscess with advanced root resorption. Histologically hypoplastic enamel layer, positively birefringent, generalized pitting, roughness with irregular general cracked borders were observed. Scanning electron microscope, revealed extensive irregular, disorganized rough superficial enamel layer. The enamel was irregularly decussate with filamentous prisms accompanied by small rounded formations. The morphological and histological examination of the tooth revealed that this patient has the features of AI. For genetic study blood sample were collected from the patient and PCR analysis revealed that there is no mutation in exons 1-7 of AMELX gene on the X chromosome of the patient. Hence, it is probable that the AI of this patient is not X-linked. It is more likely to be an autosomal mutation.
  10. Vimalraj S, Rajalakshmi S, Raj Preeth D, Vinoth Kumar S, Deepak T, Gopinath V, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Feb 01;83:187-194.
    PMID: 29208278 DOI: 10.1016/j.msec.2017.09.005
    Copper(II) complex of quercetin Cu+Q, mixed ligand complexes, quercetin-Cu(II)-phenanthroline [Cu+Q(PHt)] and quercetin-Cu(II)-neocuproine [Cu+Q(Neo)] have been synthesized and characterized. From the FT-IR spectroscopic studies, it was evident that C-ring of quercetin is involved in the metal chelation in all the three copper complexes. C-ring chelation was further proven by UV-Visible spectra and the presence of Cu(II) from EPR spectroscopic investigations. These complexes were found to have osteogenic and angiogenic properties, observed through in vitro osteoblast differentiation and chick embryo angiogenesis assay. In osteoblast differentiation, quercetin-Cu(II) complexes treatment increased calcium deposition and alkaline phosphatase activity (ALP) activity at the cellular level and stimulated Runx2 mRNA and protein, ALP mRNA and type 1 collagen mRNA expression at the molecular level. Among the complexes, Q+Cu(PHt) showed more effects on osteoblast differentiation when compared to that of other two copper complexes. Additionally, Q+Cu(Neo) showed more effect compared to Q+Cu. Furthermore, the effect of these complexes on osteoblast differentiation was confirmed by the expression of osteoblast specific microRNA, pre-mir-15b. The chick embryo angiogenesis assay showed that angiogenic parameters such as blood vessel length, size and junctions were stimulated by these complexes. Thus, the present study demonstrated that quercetin copper(II) complexes exhibit as a pharmacological agent for the orthopedic application.
  11. Kamath SM, Sridhar K, Jaison D, Gopinath V, Ibrahim BKM, Gupta N, et al.
    Sci Rep, 2020 10 23;10(1):18179.
    PMID: 33097770 DOI: 10.1038/s41598-020-74885-1
    Modulation of initial burst and long term release from electrospun fibrous mats can be achieved by sandwiching the drug loaded mats between hydrophobic layers of fibrous polycaprolactone (PCL). Ibuprofen (IBU) loaded PCL fibrous mats (12% PCL-IBU) were sandwiched between fibrous polycaprolactone layers during the process of electrospinning, by varying the polymer concentrations (10% (w/v), 12% (w/v)) and volume of coat (1 ml, 2 ml) in flanking layers. Consequently, 12% PCL-IBU (without sandwich layer) showed burst release of 66.43% on day 1 and cumulative release (%) of 86.08% at the end of 62 days. Whereas, sandwich groups, especially 12% PCLSW-1 & 2 (sandwich layers-1 ml and 2 ml of 12% PCL) showed controlled initial burst and cumulative (%) release compared to 12% PCL-IBU. Moreover, crystallinity (%) and hydrophobicity of the sandwich models imparted control on ibuprofen release from fibrous mats. Further, assay for cytotoxicity and scanning electron microscopic images of cell seeded mats after 5 days showed the mats were not cytotoxic. Nuclear Magnetic Resonance spectroscopic analysis revealed weak interaction between ibuprofen and PCL in nanofibers which favors the release of ibuprofen. These data imply that concentration and volume of coat in flanking layer imparts tighter control on initial burst and long term release of ibuprofen.
  12. Gopinath V, Kamath SM, Priyadarshini S, Chik Z, Alarfaj AA, Hirad AH
    Biomed Pharmacother, 2021 Dec 11;146:112492.
    PMID: 34906768 DOI: 10.1016/j.biopha.2021.112492
    The emergence of clinical complications and therapeutic challenges for treating various diseases necessitate the discovery of novel restorative functional materials. Polymer-based drug delivery systems have been extensively reported in the last two decades. Recently, there has been an increasing interest in the progression of natural biopolymers based controlled therapeutic strategies, especially in drug delivery and tissue engineering applications. However, the solubility and functionalisation due to their complex network structure and intramolecular bonding seem challenging. This review explores the current advancement and prospects of the most promising natural polymers such as cellulose, starch and their derivatives-based drug delivery vehicles like hydrogels, films and composites, in combating major ailments such as bone infections, microbial infections, and cancers. In addition, selective drug targeting using metal-drug (MD) and MD-based polymeric missiles have been exciting but challenging for its application in cancer therapeutics. Owing to high biocompatibility of starch and cellulose, these materials have been extensively evaluated in biomedical and pharmaceutical applications. This review presents a detailed impression of the current trends for the construction of biopolymer-based tissue engineering, drug/gene/protein delivery vehicles.
  13. Saravanan S, Sareen N, Abu-El-Rub E, Ashour H, Sequiera GL, Ammar HI, et al.
    Sci Rep, 2018 10 10;8(1):15069.
    PMID: 30305684 DOI: 10.1038/s41598-018-33144-0
    Abnormal conduction and improper electrical impulse propagation are common in heart after myocardial infarction (MI). The scar tissue is non-conductive therefore the electrical communication between adjacent cardiomyocytes is disrupted. In the current study, we synthesized and characterized a conductive biodegradable scaffold by incorporating graphene oxide gold nanosheets (GO-Au) into a clinically approved natural polymer chitosan (CS). Inclusion of GO-Au nanosheets in CS scaffold displayed two fold increase in electrical conductivity. The scaffold exhibited excellent porous architecture with desired swelling and controlled degradation properties. It also supported cell attachment and growth with no signs of discrete cytotoxicity. In a rat model of MI, in vivo as well as in isolated heart, the scaffold after 5 weeks of implantation showed a significant improvement in QRS interval which was associated with enhanced conduction velocity and contractility in the infarct zone by increasing connexin 43 levels. These results corroborate that implantation of novel conductive polymeric scaffold in the infarcted heart improved the cardiac contractility and restored ventricular function. Therefore, our approach may be useful in planning future strategies to construct clinically relevant conductive polymer patches for cardiac patients with conduction defects.
  14. Lotfy M, Badra G, Burham W, Alenzi FQ, Bermejo-Martin JF, Bernardo D, et al.
    Br J Biomed Sci, 2006 Jan;63(4):171-184.
    PMID: 28700882 DOI: 10.1080/09674845.2006.11732742
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links