Displaying all 5 publications

Abstract:
Sort:
  1. Khorshidtalab A, Salami MJ, Hamedi M
    Physiol Meas, 2013 Nov;34(11):1563-79.
    PMID: 24152422 DOI: 10.1088/0967-3334/34/11/1563
    The tradeoff between computational complexity and speed, in addition to growing demands for real-time BMI (brain-machine interface) systems, expose the necessity of applying methods with least possible complexity. Willison amplitude (WAMP) and slope sign change (SSC) are two promising time-domain features only if the right threshold value is defined for them. To overcome the drawback of going through trial and error for the determination of a suitable threshold value, modified WAMP and modified SSC are proposed in this paper. Besides, a comprehensive assessment of statistical time-domain features in which their effectiveness is evaluated with a support vector machine (SVM) is presented. To ensure the accuracy of the results obtained by the SVM, the performance of each feature is reassessed with supervised fuzzy C-means. The general assessment shows that every subject had at least one of his performances near or greater than 80%. The obtained results prove that for BMI applications, in which a few errors can be tolerated, these combinations of feature-classifier are suitable. Moreover, features that could perform satisfactorily were selected for feature combination. Combinations of the selected features are evaluated with the SVM, and they could significantly improve the results, in some cases, up to full accuracy.
  2. Hamedi M, Salleh ShH, Noor AM
    Neural Comput, 2016 06;28(6):999-1041.
    PMID: 27137671 DOI: 10.1162/NECO_a_00838
    Recent research has reached a consensus on the feasibility of motor imagery brain-computer interface (MI-BCI) for different applications, especially in stroke rehabilitation. Most MI-BCI systems rely on temporal, spectral, and spatial features of single channels to distinguish different MI patterns. However, no successful communication has been established for a completely locked-in subject. To provide more useful and informative features, it has been recommended to take into account the relationships among electroencephalographic (EEG) sensor/source signals in the form of brain connectivity as an efficient tool of neuroscience. In this review, we briefly report the challenges and limitations of conventional MI-BCIs. Brain connectivity analysis, particularly functional and effective, has been described as one of the most promising approaches for improving MI-BCI performance. An extensive literature on EEG-based MI brain connectivity analysis of healthy subjects is reviewed. We subsequently discuss the brain connectomes during left and right hand, feet, and tongue MI movements. Moreover, key components involved in brain connectivity analysis that considerably affect the results are explained. Finally, possible technical shortcomings that may have influenced the results in previous research are addressed and suggestions are provided.
  3. Hamedi M, Salleh ShH, Astaraki M, Noor AM
    Biomed Eng Online, 2013;12:73.
    PMID: 23866903 DOI: 10.1186/1475-925X-12-73
    Recently, the recognition of different facial gestures using facial neuromuscular activities has been proposed for human machine interfacing applications. Facial electromyograms (EMGs) analysis is a complicated field in biomedical signal processing where accuracy and low computational cost are significant concerns. In this paper, a very fast versatile elliptic basis function neural network (VEBFNN) was proposed to classify different facial gestures. The effectiveness of different facial EMG time-domain features was also explored to introduce the most discriminating.
  4. Hamedi M, Salleh ShH, Tan TS, Ismail K, Ali J, Dee-Uam C, et al.
    Int J Nanomedicine, 2011;6:3461-72.
    PMID: 22267930 DOI: 10.2147/IJN.S26619
    The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human-machine interface (HMI) technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG)-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2-11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy >90% of chosen combinations proved their ability to be used as command controllers.
  5. Baharuddin MY, Salleh ShH, Hamedi M, Zulkifly AH, Lee MH, Mohd Noor A, et al.
    Biomed Res Int, 2014;2014:478248.
    PMID: 24800230 DOI: 10.1155/2014/478248
    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links