Displaying publications 1 - 20 of 24 in total

  1. Hamid RA, Kee TH, Othman F
    Pharmacognosy Res, 2013 Apr;5(2):129-33.
    PMID: 23798889 DOI: 10.4103/0974-8490.110544
    Acanthopanax trifoliatus is a ginseng-like plant, which has been widely used to treat various diseases including inflammatory-related diseases.
  2. Hamid RA, Nazar R, Pop I
    Sci Rep, 2015;5:14640.
    PMID: 26440761 DOI: 10.1038/srep14640
    The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet.
  3. Hamid RA, Ungku Ahmad UN
    An increasing number of women participate in the work force due to socio-economic development result a big impact to work and family institution. Failure to meet demand for both work and family lead to work-family conflict that may give negative consequences on work and family. An example of major work-related outcome is burnout which can lead to turnover intention. Social support has been identified as an important resources that can reduce work-family conflict and burnout. This paper aims to identify the relationship between work-family conflict and turnover intention and also the mediation effect of burnout on work-family conflict and turnover intention relationship. It is proposed that there will be a positive relationship between work-family conflict and turnover intention and there is an indirect relationship between work-family conflict and turnover intention through the mediation effect of burnout. Social support from work and family is proposed to moderate the relationship between work-family conflict and burnout. Furthermore it is proposed that the strength of relationship between work-family conflict and turnover intention depends on the mediation effect of burnout and moderating effect of social support.
  4. Yeong LT, Hamid RA, Yazan LS, Khaza'ai H
    Asian Pac. J. Cancer Prev., 2013;14(4):2301-5.
    PMID: 23725131
    Ardisia crispa (Family: Myrsinaceae) is an evergreen, fruiting shrub that has been traditionally used as folklore medicine. Despite a scarcity of research publications, we have succeeded in showing suppressive effects on murine skin papillomagenesis. In extension, the present research was aimed at determining the effect of a quinone-rich fraction (QRF) isolated from the same root hexane extract on both initiation and promotion stages of carcinogenesis, at the selected dose of 30 mg/kg. Mice (groups I-IV) were initiated with a single dose of 7,12-dimethylbenz(α)anthracene (DMBA, 100 μg/100 μl) followed by repeated promotion of croton oil (1%) twice weekly for 20 weeks. In addition, group I (anti-initiation) received QRF 7 days before and after DMBA; group II (anti-promotion) received QRF 30 minutes before each croton oil application; group III (anti-initiation/ promotion) was treated with QRF as a combination of group I and II. A further two groups served as vehicle control (group V) and treated control (group VI). As carcinogen control, group IV showed the highest tumor volume (8.79±5.44) and tumor burden (3.60±1.17). Comparatively, group III revealed only 20% of tumor incidence, tumor burden (3.00±1.00) and tumor volume (2.40±1.12), which were significantly different from group IV. Group II also showed significant reduction of tumor volume (3.11), tumor burden (3.00) and tumor incidence (11.11%), along with prominent increase of latency period of tumor formation (week 12). Group I, nonetheless, demonstrated marked increment of tumor incidence by 40% with prompted latency period of tumor formation (week 7). No tumor formation was observed in groups V and VI. This study provided clear evidence of inhibitory effects of QRF during promotion period which was in agreement with our previous findings. The mechanism(s) underlying such effects have yet to be elucidated.
  5. Sulaiman H, Hamid RA, Ting YL, Othman F
    J Cancer Res Ther, 2012 Jul-Sep;8(3):404-10.
    PMID: 23174723 DOI: 10.4103/0973-1482.103521
    CONTEXT: Ardisia crispa Thunb. A. DC (Myrsinaceae) or locally known as hen's eyes has been used in local folk medicine as a remedy in various illnesses. Previously, it has been reported to inhibit various inflammatory diseases. However, research done on this plant is still limited.
    AIMS: In the present study, the hexane fraction of the A. crispa root (ACRH) was evaluated on the peri-initiation and promotion phases of skin carcinogenesis.
    MATERIALS AND METHODS: This two-stage skin carcinogenesis was induced by a single topical application of 7,12-dimethylbenz(α)anthracene (DMBA) and promoted by repeated treatment with croton oil for 10 weeks in Imprinting Control Region (ICR) mice. Morphological observation would be conducted to measure tumor incidence, tumor burden, and tumor volume. Histological evaluation on the skin tissue would also be done.
    RESULTS: The carcinogen control group exhibited 66.67% of tumor incidence. Although, in the ACRH-treated groups, at 30 mg/kg, the mice showed only 10% of tumor incidence with a significant reduction (P < 0.05) in the values of tumor burden and tumor volume of 2.00 and 0.52 mm(3), respectively. Furthermore, the result was significantly lower than that of the carcinogen and curcumin control. At 100 mg/kg, ACRH showed a comparable result to carcinogen control. On the contrary, at 300 mg/kg, ACRH exhibited 100% tumor incidence and showed a significant elevated (P < 0.05) value of tumor burden (3.80) and tumor volume (14.67 ± 2.48 mm(3)).
    CONCLUSIONS: The present study thus demonstrates that the anti-tumor effect of the chemopreventive potential of ACRH is at a lower dosage (30 mg/kg bwt) in both the initiating and promotion period, yet it exhibits a promoting effect at a higher dosage (300 mg/kg bwt).
  6. Md Roduan MR, Hamid RA, Sulaiman H, Mohtarrudin N
    Biomed. Pharmacother., 2017 Oct;94:481-488.
    PMID: 28779710 DOI: 10.1016/j.biopha.2017.07.133
    Annona muricata, locally known as soursop has been reported to exhibit antiproliferative activities against various cancer cell lines. In this current study, we have investigated the antitumor promotion of various fractions of Annona muricata leaves (AML); hexane (AMLH), dichloromethane (AMLD) and methanol (AMLM) fraction respectively on 7, 12-dimethylbenz[α]anthracene (DMBA) induced and 12-0-tetradecaboylphorbol-13-acetate (TPA) promoted skin tumorigenesis in mice via morphological assessment, biochemical analysis and histopathological evaluation. The results of the study revealed significant inhibition in tumor incidence, tumor burden and tumor volume in the groups received AMLH and AMLD, respectively, and suppressive effects in group received AMLM compared with carcinogen control group at week 21. Superoxide dismutase, catalase, and lipid peroxidation levels were returned to near normal by administration of AML to DMBA/TPA-induced mice. The above findings were supported by histopathological studies, in which the extensive epidermal hyperplasia in carcinogen control group was restored to normal in AML treated groups. Whilst, annonacin, a major annaonaceous acetogenin was found to be the highest in AMLH and AMLD. From the present study, it can be inferred that AML supressed DMBA/TPA-induced skin tumor and this antitumor-promoting activity may be linked to the antioxidant/free radical-scavenging constituents of the extract and annonacin contained in the extracts.
  7. Hamsin DE, Hamid RA, Yazan LS, Taib CN, Ting YL
    PMID: 23298265 DOI: 10.1186/1472-6882-13-5
    Ardisia crispa (Myrsinaceae) is used in traditional Malay medicine to treat various ailments associated with inflammation, including rheumatism. The plant's hexane fraction was previously shown to inhibit several diseases associated with inflammation. As there is a strong correlation between inflammation and angiogenesis, we conducted the present study to investigate the anti-angiogenic effects of the plant's roots in animal models of inflammation-induced angiogenesis.
  8. Baharum Z, Akim AM, Taufiq-Yap YH, Hamid RA, Kasran R
    Molecules, 2014 Nov 10;19(11):18317-31.
    PMID: 25389662 DOI: 10.3390/molecules191118317
    The aims of this study were to determine the antioxidant and antiproliferative activity of the following Theobroma cacao plant part methanolic extracts: leaf, bark, husk, fermented and unfermented shell, pith, root, and cherelle. Antioxidant activity was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH), thiobarbituric acid-reactive substances (TBARS), and Folin-Ciocalteu assays; the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) assay was used to determine antiproliferative activity. The root extract had the highest antioxidant activity; its median effective dose (EC50) was 358.3±7.0 µg/mL and total phenolic content was 22.0±1.1 g GAE/100 g extract as compared to the other methanolic plant part extracts. Only the cherelle extract demonstrated 10.4%±1.1% inhibition activity in the lipid peroxidation assay. The MTT assay revealed that the leaf extract had the highest antiproliferative activity against MCF-7 cells [median inhibitory concentration (IC50)=41.4±3.3 µg/mL]. Given the overall high IC50 for the normal liver cell line WRL-68, this study indicates that T. cacao methanolic extracts have a cytotoxic effect in cancer cells, but not in normal cells. Planned future investigations will involve the purification, identification, determination of the mechanisms of action, and molecular assay of T. cacao plant extracts.
  9. Hamsin DE, Hamid RA, Yazan LS, Taib CN, Yeong LT
    PMID: 24641961 DOI: 10.1186/1472-6882-14-102
    In our previous studies conducted on Ardisia crispa roots, it was shown that Ardisia crispa root inhibited inflammation-induced angiogenesis in vivo. The present study was conducted to identify whether the anti-angiogenic properties of Ardisia crispa roots was partly due to either cyclooxygenase (COX) or/and lipoxygenase (LOX) activity inhibition in separate in vitro studies.
  10. Khazaei S, Esa NM, Ramachandran V, Hamid RA, Pandurangan AK, Etemad A, et al.
    Front Pharmacol, 2017;8:5.
    PMID: 28197098 DOI: 10.3389/fphar.2017.00005
    Natural products are considered potent sources for novel drug discovery and development. The multiple therapeutic effects of natural compounds in traditional medicine motivate us to evaluate the cytotoxic activity of bulb of Allium atroviolaceum in MCF7 and MDA-MB-231, HeLa and HepG2 cell lines. The bulb methanol extract of A. atroviolaceum was found to be an active cell proliferation inhibitor at the time and dose dependent manner. Determination of DNA content by flow cytometry demonstrated S and G2/M phase arrest of MCF-7 cell, correlated to Cdk1 downregulation, S phase arrest in MDA-MB-231 which is p53 and Cdk1-dependent, sub-G0 cell cycle arrest in HeLa aligned with Cdk1 downregulation, G0/G1, S, G2/M phase arrest in HepG2 which is p53-dependent. Apoptosis as the mechanism of cell death was confirmed by morphology study, caspases activity assay, as well as apoptosis related gene expression, Bcl-2. Caspase-8, -9, and -3 activity with downregulation of Bcl-2 illustrated occurrence of both intrinsic and extrinsic pathways in MCF7, while caspase-3 and -8 activity revealed extrinsic pathway of apoptosis, although Bcl-2 downregulated. In HeLa cells, the activity of caspase-9 and -3 and downregulation of Bcl-2 shows intrinsic pathway or mitochondrial pathway, whereas HepG2 shows caspase independent apoptosis. Further, the combination of the extract with tamoxifen against MCF7 and MDA-MB-231 and combination with doxorubicin against HeLa and HeG2 demonstrated synergistic effect in most concentrations, suggests that the bulb of A. atroviolaceum may be useful for the treatment of cancer lonely or in combination with other drugs.
  11. Yusuf SYM, Ismail IA, Hamid RA, Jamil NA, Yasin MM
    Open Access Maced J Med Sci, 2019 Jun 15;7(11):1815-1817.
    PMID: 31316665 DOI: 10.3889/oamjms.2019.481
    BACKGROUND: Leprosy or Hansen disease is a chronic infectious disease that causes social stigma due to its deforming bodily appearance and physical disability. It has a wide spectrum of presentation affecting diagnosis.

    CASE REPORT: A 21-year-old man who presented with chronic isolated bilateral pinna swelling as a result of leprosy is reported. The bilateral pinna swelling started as multiple shiny papules with an erythematous background and progressively became hyperpigmented and lobular over two years. This rare presentation of leprosy poses initial diagnostic difficulties, leading to misdiagnoses by various health care professionals. Diagnoses ascribed include eczema, insect bite and perichondritis. A suspicion of leprosy was raised when hyperaesthetic hypopigmentation of skin started to appear on the body after two years, with worsening of the pinna swellings. This was confirmed by identification of Mycobacterium leprae in slit skin smear test and skin biopsy.

    CONCLUSION: Isolated involvement of pinna in a patient without lesions in other body parts is an unusual initial presentation of leprosy. However, leprosy should be kept as a rare differential diagnosis of isolated lesions on the ear in patients not responding to conventional treatment.

  12. Guo HF, Ali RM, Hamid RA, Zaini AA, Khaza'ai H
    Int J Burns Trauma, 2017;7(6):107-114.
    PMID: 29119063
    Burn injuries are one of the most devastating injuries in the world. A uniform burn wound is essential for burn research. The objective of this study was to describe a new model for inducing deep partial-thickness burns in rats. Burn wounds were performed on the dorsal part of Sprague-Dawley rats using a constructed heating device in our laboratory. Digital images of each animal were captured every day for macroscopic evaluation and for assessment of the wound contraction rate. Six animals were sacrificed on days 1, 3, 7, 11, 14, and 21 after onset of burn and their skin tissues were harvested for histological analysis. Uniform deep partial-thickness burns could be achieved in Sprague-Dawley rats under the condition of a contact temperature of 70°C, with the weight of heating devices of 300 g, and a duration of 10 s. Macroscopic evaluation recorded the general appearance of the deep partial-thickness burns. Evaluation of the wound contraction rate showed that the deep partial-thickness wound area was reduced by 90.39% of the original wound area by day 21 after burn. Microscopic evaluation by hematoxylin-eosin staining revealed the histological changes during the wound healing process. This is a standardized and reproducible model for inducing deep partial-thickness burns in Sprague-Dawley rats.
  13. Albahri AS, Hamid RA, Alwan JK, Al-Qays ZT, Zaidan AA, Zaidan BB, et al.
    J Med Syst, 2020 May 25;44(7):122.
    PMID: 32451808 DOI: 10.1007/s10916-020-01582-x
    Coronaviruses (CoVs) are a large family of viruses that are common in many animal species, including camels, cattle, cats and bats. Animal CoVs, such as Middle East respiratory syndrome-CoV, severe acute respiratory syndrome (SARS)-CoV, and the new virus named SARS-CoV-2, rarely infect and spread among humans. On January 30, 2020, the International Health Regulations Emergency Committee of the World Health Organisation declared the outbreak of the resulting disease from this new CoV called 'COVID-19', as a 'public health emergency of international concern'. This global pandemic has affected almost the whole planet and caused the death of more than 315,131 patients as of the date of this article. In this context, publishers, journals and researchers are urged to research different domains and stop the spread of this deadly virus. The increasing interest in developing artificial intelligence (AI) applications has addressed several medical problems. However, such applications remain insufficient given the high potential threat posed by this virus to global public health. This systematic review addresses automated AI applications based on data mining and machine learning (ML) algorithms for detecting and diagnosing COVID-19. We aimed to obtain an overview of this critical virus, address the limitations of utilising data mining and ML algorithms, and provide the health sector with the benefits of this technique. We used five databases, namely, IEEE Xplore, Web of Science, PubMed, ScienceDirect and Scopus and performed three sequences of search queries between 2010 and 2020. Accurate exclusion criteria and selection strategy were applied to screen the obtained 1305 articles. Only eight articles were fully evaluated and included in this review, and this number only emphasised the insufficiency of research in this important area. After analysing all included studies, the results were distributed following the year of publication and the commonly used data mining and ML algorithms. The results found in all papers were discussed to find the gaps in all reviewed papers. Characteristics, such as motivations, challenges, limitations, recommendations, case studies, and features and classes used, were analysed in detail. This study reviewed the state-of-the-art techniques for CoV prediction algorithms based on data mining and ML assessment. The reliability and acceptability of extracted information and datasets from implemented technologies in the literature were considered. Findings showed that researchers must proceed with insights they gain, focus on identifying solutions for CoV problems, and introduce new improvements. The growing emphasis on data mining and ML techniques in medical fields can provide the right environment for change and improvement.
  14. Robey RB, Weisz J, Kuemmerle NB, Salzberg AC, Berg A, Brown DG, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S203-31.
    PMID: 26106140 DOI: 10.1093/carcin/bgv037
    Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the development and selection of cancer are suggested.
  15. Carnero A, Blanco-Aparicio C, Kondoh H, Lleonart ME, Martinez-Leal JF, Mondello C, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S19-37.
    PMID: 26106138 DOI: 10.1093/carcin/bgv029
    Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes.
  16. Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S184-202.
    PMID: 26106137 DOI: 10.1093/carcin/bgv036
    One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
  17. Thompson PA, Khatami M, Baglole CJ, Sun J, Harris SA, Moon EY, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S232-53.
    PMID: 26106141 DOI: 10.1093/carcin/bgv038
    An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented.
  18. Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S38-60.
    PMID: 26106143 DOI: 10.1093/carcin/bgv030
    The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
  19. Kravchenko J, Corsini E, Williams MA, Decker W, Manjili MH, Otsuki T, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S111-27.
    PMID: 26002081 DOI: 10.1093/carcin/bgv033
    An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression.
  20. Nahta R, Al-Mulla F, Al-Temaimi R, Amedei A, Andrade-Vieira R, Bay SN, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S2-18.
    PMID: 26106139 DOI: 10.1093/carcin/bgv028
    As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links