Displaying publications 1 - 20 of 34 in total

  1. Harun A
    Malays J Med Sci, 2014 Nov-Dec;21(6):1-2.
    PMID: 25897275
    The emergence of fungal species as opportunistic pathogens has warranted further studies on their pathogenicity, epidemiology, and transmissibility. Fungal genotyping has been employed to study the genetic relatedness within the organism, in order to obtain answers to epidemiological questions (such as in outbreak confirmation) as well as to provide basis for the improvement for patients care. Various fungal genotyping methods have been previously published, which can be chosen depending on the intended use and the capability of individual laboratory.
  2. Deris ZZ, Shafei MN, Harun A
    Asian Pac J Trop Biomed, 2011 Aug;1(4):313-5.
    PMID: 23569782 DOI: 10.1016/S2221-1691(11)60050-6
    To determine the risk factors and outcomes of imipenem-resistant Acinetobacter baumannii (IRAB) bloodstream infection (BSI) cases, since there is very little publication on Acinetobacter baumannii infections from Malaysia.
  3. Tanweer FA, Rafii MY, Sijam K, Rahim HA, Ahmed F, Ashkani S, et al.
    Front Plant Sci, 2015;6:1002.
    PMID: 26734013 DOI: 10.3389/fpls.2015.01002
    Blast is the most common biotic stress leading to the reduction of rice yield in many rice-growing areas of the world, including Malaysia. Improvement of blast resistance of rice varieties cultivated in blast endemic areas is one of the most important objectives of rice breeding programs. In this study, the marker-assisted backcrossing strategy was applied to improve the blast resistance of the most popular Malaysian rice variety MR219 by introgressing blast resistance genes from the Pongsu Seribu 2 variety. Two blast resistance genes, Pi-b and Pi-kh, were pyramided into MR219. Foreground selection coupled with stringent phenotypic selection identified 15 plants homozygous for the Pi-b and Pi-kh genes, and background selection revealed more than 95% genome recovery of MR219 in advanced blast resistant lines. Phenotypic screening against blast disease indicated that advanced homozygous blast resistant lines were strongly resistant against pathotype P7.2 in the blast disease endemic areas. The morphological, yield, grain quality, and yield-contributing characteristics were significantly similar to those of MR219. The newly developed blast resistant improved lines will retain the high adoptability of MR219 by farmers. The present results will also play an important role in sustaining the rice production of Malaysia.
  4. Tanweer FA, Rafii MY, Sijam K, Rahim HA, Ahmed F, Latif MA
    C. R. Biol., 2015 May;338(5):321-34.
    PMID: 25843222 DOI: 10.1016/j.crvi.2015.03.001
    Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future.
  5. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA
    C. R. Biol., 2015 Feb;338(2):83-94.
    PMID: 25553855 DOI: 10.1016/j.crvi.2014.11.003
    Backcross breeding is the most commonly used method for incorporating a blast resistance gene into a rice cultivar. Linkage between the resistance gene and undesirable units can persist for many generations of backcrossing. Marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and accelerates recurrent parent genome (RPG) recovery. The MABC approach was employed to incorporate (a) blast resistance gene(s) from the donor parent Pongsu Seribu 1, the blast-resistant local variety in Malaysia, into the genetic background of MR219, a popular high-yielding rice variety that is blast susceptible, to develop a blast-resistant MR219 improved variety. In this perspective, the recurrent parent genome recovery was analyzed in early generations of backcrossing using simple sequence repeat (SSR) markers. Out of 375 SSR markers, 70 markers were found polymorphic between the parents, and these markers were used to evaluate the plants in subsequent generations. Background analysis revealed that the extent of RPG recovery ranged from 75.40% to 91.3% and from 80.40% to 96.70% in BC1F1 and BC2F1 generations, respectively. In this study, the recurrent parent genome content in the selected BC2F2 lines ranged from 92.7% to 97.7%. The average proportion of the recurrent parent in the selected improved line was 95.98%. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in backcross generations. The application of MAS with the MABC breeding program accelerated the recovery of the RP genome, reducing the number of generations and the time for incorporating resistance against rice blast.
  6. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KhN, et al.
    Int J Mol Sci, 2013;14(11):22499-528.
    PMID: 24240810 DOI: 10.3390/ijms141122499
    Over the last few decades, the use of molecular markers has played an increasing role in rice breeding and genetics. Of the different types of molecular markers, microsatellites have been utilized most extensively, because they can be readily amplified by PCR and the large amount of allelic variation at each locus. Microsatellites are also known as simple sequence repeats (SSR), and they are typically composed of 1-6 nucleotide repeats. These markers are abundant, distributed throughout the genome and are highly polymorphic compared with other genetic markers, as well as being species-specific and co-dominant. For these reasons, they have become increasingly important genetic markers in rice breeding programs. The evolution of new biotypes of pests and diseases as well as the pressures of climate change pose serious challenges to rice breeders, who would like to increase rice production by introducing resistance to multiple biotic and abiotic stresses. Recent advances in rice genomics have now made it possible to identify and map a number of genes through linkage to existing DNA markers. Among the more noteworthy examples of genes that have been tightly linked to molecular markers in rice are those that confer resistance or tolerance to blast. Therefore, in combination with conventional breeding approaches, marker-assisted selection (MAS) can be used to monitor the presence or lack of these genes in breeding populations. For example, marker-assisted backcross breeding has been used to integrate important genes with significant biological effects into a number of commonly grown rice varieties. The use of cost-effective, finely mapped microsatellite markers and MAS strategies should provide opportunities for breeders to develop high-yield, blast resistance rice cultivars. The aim of this review is to summarize the current knowledge concerning the linkage of microsatellite markers to rice blast resistance genes, as well as to explore the use of MAS in rice breeding programs aimed at improving blast resistance in this species. We also discuss the various advantages, disadvantages and uses of microsatellite markers relative to other molecular marker types.
  7. Mazid MS, Rafii MY, Hanafi MM, Rahim HA, Latif MA
    Physiol Plant, 2013 Nov;149(3):432-47.
    PMID: 23521023 DOI: 10.1111/ppl.12054
    A field experiment was carried out in order to evaluate genetic diversity of 41 rice genotypes using physiological traits and molecular markers. All the genotypes unveiled variations for crop growth rate (CGR), relative growth rate (RGR), net assimilation rate (NAR), yield per hill (Yhill(-1)), total dry matter (TDM), harvest index (HI), photosynthetic rate (PR), leaf area index (LAI), chlorophyll-a and chlorophyll-b at maximum tillering stage. The CGR values varied from 0.23 to 0.76 gm cm(-2) day(-1). The Yhill(-1) ranged from 15.91 to 92.26 g, while TDM value was in the range of 7.49 to 20.45 g hill(-1). PR was found to vary from 9.40 to 22.34 µmol m(-2) s(-1). PR expressed positive relation with Yhill(-1). Significant positive relation was found between CGR and TDM (r = 0.61**), NAR and CGR (r = 0.62**) and between TDM and NAR (r = 0.31**). High heritability was found in RGR and Yhill(-1). Cluster analysis based on the traits grouped 41 rice genotypes into seven clusters. A total of 310 polymorphic loci were detected across the 20 inter-simple sequence repeats (ISSR) markers. The UPGMA dendrogram grouped 41 rice genotypes into 11 clusters including several sub-clusters. The Mantel test revealed positive correlation between quantitative traits and molecular markers (r = 0.41). On the basis of quantitative traits and molecular marker analyses parental genotypes, IRBB54 with MR84, IRBB60 with MR84, Purbachi with MR263, IRBB65 with BR29, IRBB65 with Pulut Siding and MRQ74 with Purbachi could be hybridized for future breeding program.
  8. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA
    J. Sci. Food Agric., 2017 Jul;97(9):2810-2818.
    PMID: 27778337 DOI: 10.1002/jsfa.8109
    BACKGROUND: The rice cultivar MR219 is famous for its better yield and long and fine grain quality; however, it is susceptible to blast disease. The main objective of this study was to introgress blast resistance genes into MR219 through marker-assisted selection (MAS). The rice cultivar MR219 was used as the recurrent parent, and Pongsu Seribu 1 was used as the donor.

    RESULTS: Marker-assisted foreground selection was performed using RM6836 and RM8225 to identify plants possessing blast resistance genes. Seventy microsatellite markers were used to estimate recurrent parent genome (RPG) recovery. Our analysis led to the development of 13 improved blast resistant lines with Piz, Pi2 and Pi9 broad-spectrum blast resistance genes and an MR219 genetic background. The RPG recovery of the selected improved lines was up to 97.70% with an average value of 95.98%. Selected improved lines showed a resistance response against the most virulent blast pathogen pathotype, P7.2. The selected improved lines did not express any negative effect on agronomic traits in comparison with MR219.

    CONCLUSION: The research findings of this study will be a conducive approach for the application of different molecular techniques that may result in accelerating the development of new disease-resistant rice varieties, which in turn will match rising demand and food security worldwide. © 2016 Society of Chemical Industry.

  9. Zueter AM, Rahman ZA, Yean CY, Harun A
    Int J Mol Epidemiol Genet, 2015;6(1):41-7.
    PMID: 26417404
    Burkholderia pseudomallei is a soil dwelling Gram-negative bacteria predominates in Southeast Asia zone and the tropical part of Australia. Genetic diversity has been explored among various populations and environments worldwide. To date, little data is available on MLST profiling of clinical B. pseudomallei isolates in peninsular Malaysia. In this brief report, thirteen culture positive B. pseudomallei cases collected from a single population of Terengganu state in the Western Peninsular Malaysia and were confirmed by In-house TTS1-PCR. Isolates were subjected for multi-locus sequence typing (MLST) to explore their genotypic diversity and to investigate for possible clonal clustering of a certain sequence type. Patient's clinical information was examined to investigate for clinical correlation among the different genotypes. In spite of small sample set, MLST results indicated predictive results; considerable genotypic diversity, predominance and novelty among B. pseudomallei collected over a single geographically-located population in Malaysia. Massive genotypic heterogeneity was observed; 8 different sequence types with predominance of sequence type 54 and discovery of two novel sequence types. However, no clear pathogenomic or organ tropism clonal relationships were predicted.
  10. Zueter AR, Rahman ZA, Abumarzouq M, Harun A
    BMC Infect. Dis., 2018 01 02;18(1):5.
    PMID: 29291714 DOI: 10.1186/s12879-017-2912-9
    BACKGROUND: Previous studies on the Burkholderia pseudomallei genetic diversity among clinical isolates from melioidosis-endemic areas have identified genetic factors contributing to differential virulence. Although it has been ruled out in Australian and Thai B. pseudomallei populations, it remains unclear whether B. pseudomallei sequence types (STs) correlate with disease in Malaysian patients with melioidosis.

    METHODS: In this study, multi-locus sequence typing (MLST) was performed on clinical B. pseudomallei isolates collected from Kelantan state of Malaysia, patients' clinical data were reviewed and then genotype-risk correlations were investigated.

    RESULTS: Genotyping of 83 B. pseudomallei isolates revealed 32 different STs, of which 13(40%) were novel. The frequencies of the STs among the 83 isolates ranged from 1 to 12 observations, and ST54, ST371 and ST289 were predominant. All non-novel STs reported in this study have also been identified in other Asian countries. Based on the MLST data analysis, the phylogenetic tree showed clustering of the STs with each other, as well as with the STs from Southeast Asia and China. No evidence for associations between any of B. pseudomallei STs and clinical melioidosis presentation was detected. In addition, the bacterial genotype clusters in relation with each clinical outcome were statistically insignificant, and no risk estimate was reported. This study has expanded the data for B. pseudomallei on MLST database map and provided insights into the molecular epidemiology of melioidosis in Peninsular Malaysia.

    CONCLUSION: This study concurs with previous reports concluding that infecting strain type plays no role in determining disease presentation.

  11. Deris ZZ, Harun A, Omar M, Johari MR
    Trop Biomed, 2009 Aug;26(2):123-9, 219-22.
    PMID: 19901898
    Acinetobacter spp. is a known nosocomial pathogen causing a wide range of clinical diseases mainly pneumonia, wound infections and blood stream infections (BSI). A cross sectional descriptive study was performed to determine the prevalence of Acinetobacter infection in Hospital Universiti Sains Malaysia, Kelantan (HUSM). The risk factors of Acinetobacter BSI were determined by 1:1 case control analytical study, involving fifty-eight confirmed cases of Acinetobacter BSI patients compared to the cases caused by Gram-negative bacteria. The prevalence of Acinetobacter BSI in the HUSM was 6.11% (95% CI 4.88-7.53%). The attack rate of Acinetobacter BSI was 2.77 episodes per 1000 hospital admissions. Acinetobacter BSI patients were mostly located in intensive care unit and had a longer intensive care unit stay. In univariate analysis, the risk factors for Acinetobacter BSI include prior exposure to antimicrobial agents such as penicillins, aminoglycosides and cephalosporins, mechanical ventilation, presence of nasogastric tube, arterial catheter and urinary catheter. In multivariate analysis, the independent risk factors for Acinetobacter BSI were prior treatment with cephalosporins (OR 3.836 95% CI 1.657-8.881 p=0.002) and mechanical ventilation (OR 3.164 95% CI 1.353-7.397 p=0.008). This study revealed that rational use of antimicrobial agents is of paramount importance to control Acinetobacter BSI.
  12. Zaidah AR, Mohammad NI, Suraiya S, Harun A
    PMID: 28473912 DOI: 10.1186/s13756-017-0200-5
    BACKGROUND: Infections by multidrug-resistant gram-negative bacteria (MDR-GNB) have been continuously growing and pose challenge to health institution globally. Carbapenem-resistant Enterobacteriacea (CRE) was identified as one of the MDR-GNB which has limited treatment options and higher mortality compared to those of sensitive strains. We report an increased burden of CRE fecal carriage at a hospital in the North-eastern region of Malaysia.

    METHODS: A retrospective descriptive study from August 2013 to December 2015 was conducted in the Medical Microbiology & Parasitology laboratory of Hospital Universiti Sains Malaysia, which is a tertiary teaching hospital with more than 700 beds. This hospital treats patients with various medical and surgical conditions. Suspected CRE from any clinical specimens received by the laboratory was identified and confirmed using standard protocols. Polymerase chain reaction (PCR) assay was performed to determine the genotype.

    RESULTS: Altogether, 8306 Enterobacteriaceae was isolated from various clinical specimens during the study period and 477/8306 (5.74%) were CRE. Majority of the isolated CRE were Klebsiella [408/477, (85.5%)], of which Klebsiella pneumoniae was the predominant species, 388/408 (95%). CRE were mainly isolated from rectal swab (screening), 235/477 (49.3%); urine, 76/477 (15.9%); blood, 46/477 (9.6%) and about 7.1% from tracheal aspirate. One hundred and thirty-six isolates were subjected to genotype determination and., 112/136 (82.4%) showed positive detection of New Delhi metallo-β-lactamase 1 (NDM-1) gene (blaNDM1).

    CONCLUSION: The study noted a high numbers of CRE isolated especially from rectal swabs. Active screening results in significant cost pressures and therefore should be revisited and revised, especially in low resource settings.

  13. Mohamad NI, Harun A, Hasan H, Deris ZZ
    Indian J. Microbiol., 2018 Jun;58(2):244-247.
    PMID: 29651186 DOI: 10.1007/s12088-018-0722-4
    Although doxycycline is active against Burkholderia pseudomallei and has been used in the eradication stage of melioidosis therapy, it is not regularly used during the initial intensive phase. In order to assess its potential use in intensive phase therapy, we investigated in vitro pharmacodynamic activity of doxycycline and β-lactams alone and in combination against four Malaysian strains of B. pseudomallei. Using a checkerboard assay, the combinations of doxycycline and imipenem, doxycycline and ceftazidime, and doxycycline and amoxicillin-clavulanate tested against four strains showed indifferent effects with summation fractional inhibitory concentration values ranging from 0.62 to 2.12. Time-kill experiments also indicated that the combinations of doxycycline/β-lactam antibiotics against four tested strains did not fulfil synergy criteria, in which all combinations showed indifferent effects with - 1.36 to 1.26-log CFU/mL compared to the most active monotherapy regimen in each combination. No re-growth of bacteria was detected after the early killing in doxycycline/β-lactam combination regimens compared to β-lactam monotherapy regimens, in which 9 out of 10 were associated with re-growth of bacteria. As no synergistic activity was observed, this in vitro study showed that doxycycline offers no additional benefit to be used in combination with β-lactams in the intensive phase of therapy.
  14. Dangprapai Y, Ngamskulrungroj P, Senawong S, Ungprasert P, Harun A
    PMID: 32148605 DOI: 10.1128/jmbe.v21i1.1773
    During the preclinical years, single-best-answer multiple-choice questions (SBA-MCQs) are often used to test the higher-order cognitive processes of medical students (such as application and analysis) while simultaneously assessing lower-order processes (like knowledge and comprehension). Consequently, it can be difficult to pinpoint which learning outcome has been achieved or needs improvement. We developed a new scoring system for SBA-MCQs using a step-by-step methodology to evaluate each learning outcome independently. Enrolled in this study were third-year medical students (n = 316) who had registered in the basic microbiology course at the Faculty of Medicine, Siriraj Hospital, Mahidol University during the academic year 2017. A step-by-step SBA-MCQ with a new scoring system was created and used as a tool to evaluate the validity of the traditional SBA-MCQs that assess two separate outcomes simultaneously. The scores for the two methods, in percentages, were compared using two different questions (SBA-MCQ1 and SBA-MCQ2). SBA-MCQ1 tested the students' knowledge of the causative agent of a specific infectious disease and the basic characteristics of the microorganism, while SBA-MCQ2 tested their knowledge of the causative agent of a specific infectious disease and the pathogenic mechanism of the microorganism. The mean score obtained with the traditional SBA-MCQs was significantly lower than that obtained with the step-by-step SBA-MCQs (85.9% for the traditional approach versus 90.9% for step-by-step SBA-MCQ1; p < 0.001; and 81.5% for the traditional system versus 87.4% for step-by-step SBA-MCQ2; p < 0.001). Moreover, 65.8% and 87.8% of the students scored lower with the traditional SBA-MCQ1 and the traditional SBA-MCQ2, respectively, than with the corresponding sets of step-by-step SBA-MCQ questions. These results suggest that traditional SBA-MCQ scores need to be interpreted with caution because they have the potential to underestimate the learning achievement of students. Therefore, the step-by-step SBA-MCQ is preferable to the traditional SBA-MCQs and is recommended for use in examinations during the preclinical years.
  15. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, et al.
    Biotechnol. Biotechnol. Equip., 2015 Mar 4;29(2):237-254.
    PMID: 26019637
    The world's population is increasing very rapidly, reducing the cultivable land of rice, decreasing table water, emerging new diseases and pests, and the climate changes are major issues that must be addressed to researchers to develop sustainable crop varieties with resistance to biotic and abiotic stresses. However, recent scientific discoveries and advances particularly in genetics, genomics and crop physiology have opened up new opportunities to reduce the impact of these stresses which would have been difficult if not impossible as recently as the turn of the century. Marker assisted backcrossing (MABC) is one of the most promising approaches is the use of molecular markers to identify and select genes controlling resistance to those factors. Regarding this, MABC can contribute to develop resistant or high-yielding or quality rice varieties by incorporating a gene of interest into an elite variety which is already well adapted by the farmers. MABC is newly developed efficient tool by which using large population sizes (400 or more plants) for the backcross F1 generations, it is possible to recover the recurrent parent genotype using only two or three backcrosses. So far, many high yielding, biotic and abiotic stresses tolerance, quality and fragrance rice varieties have been developed in rice growing countries through MABC within the shortest timeframe. Nowadays, MABC is being used widely in plant breeding programmes to develop new variety/lines especially in rice. This paper reviews recent literature on some examples of variety/ line development using MABC strategy.
  16. Golestan Hashemi FS, Rafii MY, Ismail MR, Mohamed MT, Rahim HA, Latif MA, et al.
    PLoS ONE, 2015;10(6):e0129069.
    PMID: 26061689 DOI: 10.1371/journal.pone.0129069
    When a phenotype of interest is associated with an external/internal covariate, covariate inclusion in quantitative trait loci (QTL) analyses can diminish residual variation and subsequently enhance the ability of QTL detection. In the in vitro synthesis of 2-acetyl-1-pyrroline (2AP), the main fragrance compound in rice, the thermal processing during the Maillard-type reaction between proline and carbohydrate reduction produces a roasted, popcorn-like aroma. Hence, for the first time, we included the proline amino acid, an important precursor of 2AP, as a covariate in our QTL mapping analyses to precisely explore the genetic factors affecting natural variation for rice scent. Consequently, two QTLs were traced on chromosomes 4 and 8. They explained from 20% to 49% of the total aroma phenotypic variance. Additionally, by saturating the interval harboring the major QTL using gene-based primers, a putative allele of fgr (major genetic determinant of fragrance) was mapped in the QTL on the 8th chromosome in the interval RM223-SCU015RM (1.63 cM). These loci supported previous studies of different accessions. Such QTLs can be widely used by breeders in crop improvement programs and for further fine mapping. Moreover, no previous studies and findings were found on simultaneous assessment of the relationship among 2AP, proline and fragrance QTLs. Therefore, our findings can help further our understanding of the metabolomic and genetic basis of 2AP biosynthesis in aromatic rice.
  17. Golestan Hashemi FS, Rafii MY, Ismail MR, Mohamed MT, Rahim HA, Latif MA, et al.
    Gene, 2015 Jan 25;555(2):101-7.
    PMID: 25445269 DOI: 10.1016/j.gene.2014.10.048
    MRQ74, a popular aromatic Malaysian landrace, allows for charging considerably higher prices than non-aromatic landraces. Thus, breeding this profitable trait has become a priority for Malaysian rice breeding. Despite many studies on aroma genetics, ambiguities considering its genetic basis remain. It has been observed that identifying quantitative trait loci (QTLs) based on anchor markers, particularly candidate genes controlling a trait of interest, can increase the power of QTL detection. Hence, this study aimed to locate QTLs that influence natural variations in rice scent using microsatellites and candidate gene-based sequence polymorphisms. For this purpose, an F2 mapping population including 189 individual plants was developed by MRQ74 crosses with 'MR84', a non-scented Malaysian accession. Additionally, qualitative and quantitative approaches were applied to obtain a phenotype data framework. Consequently, we identified two QTLs on chromosomes 4 and 8. These QTLs explained from 3.2% to 39.3% of the total fragrance phenotypic variance. In addition, we could resolve linkage group 8 by adding six gene-based primers in the interval harboring the most robust QTL. Hence, we could locate a putative fgr allele in the QTL found on chromosome 8 in the interval RM223-SCU015RM (1.63cM). The identified QTLs represent an important step toward recognition of the rice flavor genetic control mechanism. In addition, this identification will likely accelerate the progress of the use of molecular markers for gene isolation, gene-based cloning, and marker-assisted selection breeding programs aimed at improving rice cultivars.
  18. Maina MB, Mohammed YG, Bukar AM, Ahmad U, Tijjani Salihu A, Ibrahim HA, et al.
    Eur. J. Neurosci., 2019 06;49(12):1544-1551.
    PMID: 30758873 DOI: 10.1111/ejn.14372
    Of the 572 neuroscience-related studies published in Nigerian from 1996 to 2017, <5% used state-of-the-art techniques, none used transgenic models, and only one study was published in a top-tier journal.
  19. Azali MA, Yean Yean C, Harun A, Aminuddin Baki NN, Ismail N
    J Trop Med, 2016;2016:2060241.
    PMID: 27127522 DOI: 10.1155/2016/2060241
    The presence of pathogenic Leptospira spp. in the environment poses threats to human health. The aim of this study was to detect and characterize Leptospira spp. from environmental samples. A total of 144 samples comprised of 72 soil and 72 water samples were collected from markets and recreational areas in a north-eastern state in Malaysia. Samples were cultured on Ellinghausen and McCullough modified by Johnson and Harris media. Leptospires were positive in 22.9% (n = 33) of the isolates. Based on partial sequences of 16S rRNA, a pathogenic leptospire, Leptospira alstonii (n = 1/33), was identified in 3% of the isolates followed by intermediate leptospire (L. wolffii, n = 1/33, and L. licerasiae, n = 7/33) and nonpathogenic leptospire, L. meyeri (n = 22/33) in 24.2% and 66.7%, respectively. This study demonstrates the presence of a clinically significant pathogenic L. alstonii in the environments which could pose health risks to the occupants and visitors.
  20. Harun A, Vidyadaran S, Lim SM, Cole AL, Ramasamy K
    PMID: 26047814 DOI: 10.1186/s12906-015-0685-5
    Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines like tumour necrosis factor-alpha (TNF-α) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. This study investigated the protective role of five endophytic extracts (HAB16R12, HAB16R13, HAB16R14, HAB16R18 and HAB8R24) against LPS-induced inflammatory events in vitro. These endophytic extracts were previously found to exhibit potent neuroprotective effect against LPS-challenged microglial cells.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links