Displaying all 11 publications

Abstract:
Sort:
  1. Ordóñez-Mena JM, Schöttker B, Fedirko V, Jenab M, Olsen A, Halkjær J, et al.
    Eur J Epidemiol, 2016 Mar;31(3):311-23.
    PMID: 25977096 DOI: 10.1007/s10654-015-0040-7
    The associations of circulating 25-hydroxyvitamin D [25(OH)D] concentrations with total and site-specific cancer incidence have been examined in several epidemiological studies with overall inconclusive findings. Very little is known about the association of vitamin D with cancer incidence in older populations. We assessed the association of pre-diagnostic serum 25(OH)D levels with incidence of all cancers combined and incidence of lung, colorectal, breast, prostate and lymphoid malignancies among older adults. Pre-diagnostic 25(OH)D concentrations and cancer incidence were available in total for 15,486 older adults (mean age 63, range 50-84 years) participating in two cohort studies: ESTHER (Germany) and TROMSØ (Norway); and a subset of previously published nested-case control data from a another cohort study: EPIC-Elderly (Greece, Denmark, Netherlands, Spain and Sweden) from the CHANCES consortium on health and aging. Cox proportional hazards or logistic regression were used to derive multivariable adjusted hazard and odds ratios, respectively, and their 95% confidence intervals across 25(OH)D categories. Meta-analyses with random effects models were used to pool study-specific risk estimates. Overall, lower 25(OH)D concentrations were not significantly associated with increased incidence of most of the cancers assessed. However, there was some evidence of increased breast cancer and decreased lymphoma risk with higher 25(OH)D concentrations. Our meta-analyses with individual participant data from three large European population-based cohort studies provide at best limited support for the hypothesis that vitamin D may have a major role in cancer development and prevention among European older adults.
  2. Travis RC, Perez-Cornago A, Appleby PN, Albanes D, Joshu CE, Lutsey PL, et al.
    Cancer Res, 2019 Jan 01;79(1):274-285.
    PMID: 30425058 DOI: 10.1158/0008-5472.CAN-18-2318
    Previous prospective studies assessing the relationship between circulating concentrations of vitamin D and prostate cancer risk have shown inconclusive results, particularly for risk of aggressive disease. In this study, we examine the association between prediagnostic concentrations of 25-hydroxyvitamin D [25(OH)D] and 1,25-dihydroxyvitamin D [1,25(OH)2D] and the risk of prostate cancer overall and by tumor characteristics. Principal investigators of 19 prospective studies provided individual participant data on circulating 25(OH)D and 1,25(OH)2D for up to 13,462 men with incident prostate cancer and 20,261 control participants. ORs for prostate cancer by study-specific fifths of season-standardized vitamin D concentration were estimated using multivariable-adjusted conditional logistic regression. 25(OH)D concentration was positively associated with risk for total prostate cancer (multivariable-adjusted OR comparing highest vs. lowest study-specific fifth was 1.22; 95% confidence interval, 1.13-1.31; P trend < 0.001). However, this association varied by disease aggressiveness (P heterogeneity = 0.014); higher circulating 25(OH)D was associated with a higher risk of nonaggressive disease (OR per 80 percentile increase = 1.24, 1.13-1.36) but not with aggressive disease (defined as stage 4, metastases, or prostate cancer death, 0.95, 0.78-1.15). 1,25(OH)2D concentration was not associated with risk for prostate cancer overall or by tumor characteristics. The absence of an association of vitamin D with aggressive disease does not support the hypothesis that vitamin D deficiency increases prostate cancer risk. Rather, the association of high circulating 25(OH)D concentration with a higher risk of nonaggressive prostate cancer may be influenced by detection bias. SIGNIFICANCE: This international collaboration comprises the largest prospective study on blood vitamin D and prostate cancer risk and shows no association with aggressive disease but some evidence of a higher risk of nonaggressive disease.
  3. Szulkin R, Karlsson R, Whitington T, Aly M, Gronberg H, Eeles RA, et al.
    Cancer Epidemiol Biomarkers Prev, 2015 Nov;24(11):1796-800.
    PMID: 26307654 DOI: 10.1158/1055-9965.EPI-15-0543
    BACKGROUND: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical.

    METHODS: We performed a genome-wide survival analysis of cause-specific death in 24,023 prostate cancer patients (3,513 disease-specific deaths) from the PRACTICAL and BPC3 consortia. Top findings were assessed for replication in a Norwegian cohort (CONOR).

    RESULTS: We observed no significant association between genetic variants and prostate cancer survival.

    CONCLUSIONS: Common genetic variants with large impact on prostate cancer survival were not observed in this study.

    IMPACT: Future studies should be designed for identification of rare variants with large effect sizes or common variants with small effect sizes.

  4. Dadaev T, Saunders EJ, Newcombe PJ, Anokian E, Leongamornlert DA, Brook MN, et al.
    Nat Commun, 2018 06 11;9(1):2256.
    PMID: 29892050 DOI: 10.1038/s41467-018-04109-8
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.
  5. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2018 07;50(7):928-936.
    PMID: 29892016 DOI: 10.1038/s41588-018-0142-8
    Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our analysis identified 62 novel loci associated (P C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; P = 2.3 × 10-9; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 2.55-2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04-6.48) risk stratum compared with the population average. These findings improve risk prediction, enhance fine-mapping, and provide insight into the underlying biology of PrCa1.
  6. Schumacher FR, Olama AAA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2019 02;51(2):363.
    PMID: 30622367 DOI: 10.1038/s41588-018-0330-6
    In the version of this article initially published, the name of author Manuela Gago-Dominguez was misspelled as Manuela Gago Dominguez. The error has been corrected in the HTML and PDF version of the article.
  7. Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A, et al.
    Nat Genet, 2021 Jan;53(1):65-75.
    PMID: 33398198 DOI: 10.1038/s41588-020-00748-0
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
  8. Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, et al.
    Nat Genet, 2020 06;52(6):572-581.
    PMID: 32424353 DOI: 10.1038/s41588-020-0609-2
    Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype1-3. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P 
  9. Wang A, Shen J, Rodriguez AA, Saunders EJ, Chen F, Janivara R, et al.
    Nat Genet, 2023 Dec;55(12):2065-2074.
    PMID: 37945903 DOI: 10.1038/s41588-023-01534-4
    The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links