Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Huang LT, Phares R, Hollender MH
    Arch. Gen. Psychiatry, 1976 Jan;33(1):41-3.
    PMID: 1247362
    In a previous study, it was noted that "a strong desire to be held or cuddled correlated with a general leaning toward openness in emotional expression." As is well known, some cultures foster openness, while others do not. This project was designed to assess the influence of cultural attitudes on the wish to be held. To do so, questionnaires were given to five groups of Asian women living in Kuala Lumpur, Malaysia. The most striking differences found were between two groups of Chinese women, one Chinese-educated, and the other, English-educated. The Chinese-educated group inhibited the expression of sensual needs. An English education overturned the traditional mode of response; women in this group scored highest in their wish to be held and lowest in their inclination to keep their body-contact desires secret. This study demonstrates that cultural as well as psychological forces exert a profound influence on the wish to be held.
  2. Ahmad NH, Huang L, Juneja V
    Food Res Int, 2024 Jan;176:113786.
    PMID: 38163703 DOI: 10.1016/j.foodres.2023.113786
    Liquid egg yolk (LEY) is often treated with phospholipase A2 (PLA2) to improve its emulsifying capacity and thermal stability. However, this process may allow certain pathogens to grow. The objective of this study was to evaluate the growth kinetics of mesophilic Bacillus cereus in LEY during PLA2 treatment. Samples, inoculated with B. cereus vegetative cells, were incubated isothermally at different temperatures between 9 and 50 °C to observe the bacterial growth and survival. Under the observation conditions, bacterial growth occurred between 15 and 48 °C, but not at 9 and 50 °C. The growth curves were analyzed using the USDA IPMP-Global Fit, with the no-lag phase model as the primary model in combination with either the cardinal temperatures model (CTM) or the Huang square-root model (HSRM) as the secondary model. While similar maximum growth temperatures (Tmax) were determined (48.4 °C for HSRM and 48.1 °C for CTM), the minimum growth temperature (Tmin) of the HSRM more accurately described the lower limit (9.26 °C), in contrast to 6.51 °C for CTM, suggesting that the combination of the no-lag phase model and HSRM was more suitable to describe the growth of mesophilic B. cereus in LEY. The root mean square error (RMSE) of model validation and development was <0.5 log CFU/g, indicating the combination of the no-lag phase model and HSRM could predict the growth of mesophilic B. cereus in LEY during PLA2 treatment. The results of this study may allow the food industry to choose a suitable temperature for PLA2 treatment of LEY to prevent the growth of mesophilic B. cereus.
  3. Huang L, Qi W, Zuo Y, Alias SA, Xu W
    Dev Comp Immunol, 2020 12;113:103779.
    PMID: 32735958 DOI: 10.1016/j.dci.2020.103779
    The present study reported the first pathogenic Aeromonas salmonicida (SRW-OG1) isolated from the warm water fish orange-spotted grouper (Epinephelus coioides), and investigated the function of Aryl hydrocarbon receptor (AhR), a ligand-dependent transcriptional factor which has been recently found to be closely associated with immune response in mammals and E. coioides. Our results showed that AhR was activated by an unknown ligand in the spleen, intestine and macrophages. Meanwhile, ahr1a and ahr1b were significantly increased in the spleen, intestine and macrophages, whereas ahr2 was only increased in the intestine, which indicated that the contribution of AhR2 to the immune response may be less than that of AhR1a and AhR1b. Some key genes involved in the macrophage inflammatory response, bacterial recognition, and intestinal immunity were significantly up-regulated in the SRW-OG1 infected E. coioides. Nevertheless, declining macrophage ROS production and down-regulation of related genes were also observed, suggesting that SRW-OG1 utilized its virulence mechanisms to prevent macrophage ROS production. Furthermore, AhR inhibitor 3', 4'-DMF and the silence of ahr1a or ahr1b significantly rescued the increased IL-1β and IL-8 induced by SRW-OG1 infection, which proved that the induction of IL-1β and IL-8 in E. coioides macrophages was mediated by AhR. However, BPI/LBP, ROS production and related genes were not affected by AhR. The survival rate and immune escape rate of SRW-OG1 in the ahr1a/ahr1b knocked-down and 3', 4'-DMF treated macrophages were significantly increased compared with those in wild type macrophages. Taken together, it was preliminarily confirmed that ahr1a and ahr1b played an important role in the immune response against A. salmonicida SRW-OG1.
  4. Tan K, Huang L, Tan K, Lim L, Peng Y, Cheong KL
    Food Chem X, 2023 Oct 30;19:100856.
    PMID: 37780264 DOI: 10.1016/j.fochx.2023.100856
    Coronary heart disease (CHD) is one of the leading causes of death worldwide. Seafood, especially fish and shellfish, is a healthy food that reduces the risk of CHD. In many regions, seafood is consumed cooked to eliminate potentially pathogenic microorganisms. Although there have been many reports of culinary preparations causing changes in the fatty acid profile of fish and shellfish, this information has not been well organized, and most of it is not associated to CHD. Therefore, this study was conducted to study the effect of culinary treatments of seafood on lipid nutritional quality in relation to promotion/prevention of CHD. In this study, fatty acid profiles of fish and shellfish prepared with different culinary preparations were obtained from published literature. Lipid nutritional quality indices related to promoting/preventing CHD were calculated and analyzed to reveal the effects of culinary treatment on the lipid nutritional quality of fish and shellfish in promoting/preventing of CHD. The information in this article is very useful and can fill the knowledge gap of the effects of culinary preparation on the lipid nutritional quality of fish and shellfish. Such information is very useful for guiding consumers to choose better ways to cook fish and shellfish to reduce the risk of CHD.
  5. Huang L, Said R, Goh HC, Cao Y
    PMID: 36833663 DOI: 10.3390/ijerph20042968
    China's internal migrants suffer from marginalised housing conditions, poor neighbourhood environments and residential segregation, which may have significant implications on health and well-being. Echoing recent calls for interdisciplinary research on migrant health and well-being, this study examines the associations and mechanisms of the impact of the residential environment on the health and well-being of Chinese migrants. We found that most of the relevant studies supported the "healthy migration effect", but the phenomenon was only applicable to migrants' self-reported physical health rather than mental health. The subjective well-being of migrants is lower than that of urban migrants. There is a debate between the effectiveness of residential environmental improvements and the ineffectiveness of residential environmental improvements in terms of the impact of the neighbourhood environment on migrants' health and well-being. Housing conditions and the neighbourhood's physical and social environment can enhance migrants' health and well-being by strengthening place attachment and social cohesion, building localised social capital and gaining neighbourhood social support. Residential segregation on the neighbourhood scale affects the health outcomes of migrant populations through the mechanism of relative deprivation. Our studies build a vivid and comprehensive picture of research to understand migration, urban life and health and well-being.
  6. Liu X, Huang L, Lim L, Fazhan H, Tan K
    PMID: 38294719 DOI: 10.1080/10408398.2023.2301432
    Bivalves are nutritious animal protein source for humans, rich in high quality proteins, lipids, and carbohydrates. Many studies have shown that ocean warming has detrimental effects on the nutritional quality of bivalves. Although a number of studies are available on the effect of ocean warming on the nutritional value of bivalves, this information is not well organized. In this context, the current study provides a critical review of the effects of ocean warming on the nutritional quality of commercially important edible marine bivalves. In general, ocean warming has caused a reduction in the total lipid and carbohydrate content of bivalves, especially those bivalves inhabiting temperate regions. As for protein, there is no general trend in the effects of ocean warming on the protein reserves of bivalves. In addition, the specific effects of elevated temperature on the macro-nutrients of bivalves highly depend on the tissues, sex and developmental stages of bivalves, as well as seasonal factors. This review not only fills in the knowledge gap regarding the effects of elevated temperature on the macro-nutrients of commercially important marine bivalves but also provides guidance for the establishment of bivalve aquaculture and fisheries management plans to mitigate the impact of climate change.
  7. Huang L, Wen X, Wang Y, Zou Y, Ma B, Liao X, et al.
    J Environ Sci (China), 2014 Oct 1;26(10):2001-6.
    PMID: 25288543 DOI: 10.1016/j.jes.2014.07.012
    Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods: (1) adding manure from animals that consume a diet containing antibiotics, and (2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline (CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations (0.55 and 0.22mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55mg CTC/g (HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKE treatment was reduced (p<0.05) by 12% during the whole experimental period and 15% during the first 7days. The treatments had no significant effect on the pH and chemical oxygen demand value of the digesters, and the total nitrogen of the 0.55mg CTC/kg manure collected from mediated swine was significantly higher than the other values. Therefore, different methane production under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester.
  8. Huang L, Li S, Tan CP, Feng Y, Zhang B, Fu X, et al.
    Carbohydr Polym, 2021 Sep 01;267:118181.
    PMID: 34119149 DOI: 10.1016/j.carbpol.2021.118181
    Lauric acid was introduced into "Empty" V-type starch using a solid encapsulation method. The structural characteristics and emulsifying properties of the starch-fatty acid complex (SFAC) were explored as a function of the complexing temperature. X-ray diffraction and differential scanning calorimetry confirmed that SFAC was mainly composed of type-I amylose inclusion complexes. Contact angle measurements revealed that the hydrophobic properties of SFAC were closely related to the temperature-regulated complex index. The particle size range of SFAC gradually increased as the complexing temperature increased. The SFAC-stabilized Pickering emulsion at c of 5% and Φ of 40-60% possessed a small droplet size and long-term storage stability for up to 30 days, resulting from the formation of a gel-like network. This study provides new insight into the design of hydrophobic modified starch as a novel and multifunctional emulsifier and is of great help in the development of starch-based Pickering emulsion gels.
  9. Shi Y, Huang L, Soh AK, Weng GJ, Liu S, Redfern SAT
    Sci Rep, 2017 09 11;7(1):11111.
    PMID: 28894256 DOI: 10.1038/s41598-017-11633-y
    Electrocaloric (EC) materials show promise in eco-friendly solid-state refrigeration and integrable on-chip thermal management. While direct measurement of EC thin-films still remains challenging, a generic theoretical framework for quantifying the cooling properties of rich EC materials including normal-, relaxor-, organic- and anti-ferroelectrics is imperative for exploiting new flexible and room-temperature cooling alternatives. Here, we present a versatile theory that combines Master equation with Maxwell relations and analytically relates the macroscopic cooling responses in EC materials with the intrinsic diffuseness of phase transitions and correlation characteristics. Under increased electric fields, both EC entropy and adiabatic temperature changes increase quadratically initially, followed by further linear growth and eventual gradual saturation. The upper bound of entropy change (∆Smax) is limited by distinct correlation volumes (V cr ) and transition diffuseness. The linearity between V cr and the transition diffuseness is emphasized, while ∆Smax = 300 kJ/(K.m3) is obtained for Pb0.8Ba0.2ZrO3. The ∆Smax in antiferroelectric Pb0.95Zr0.05TiO3, Pb0.8Ba0.2ZrO3 and polymeric ferroelectrics scales proportionally with V cr-2.2, owing to the one-dimensional structural constraint on lattice-scale depolarization dynamics; whereas ∆Smax in relaxor and normal ferroelectrics scales as ∆Smax ~ V cr-0.37, which tallies with a dipolar interaction exponent of 2/3 in EC materials and the well-proven fractional dimensionality of 2.5 for ferroelectric domain walls.
  10. Zhang W, Huang G, Ng K, Ji Y, Gao B, Huang L, et al.
    Biomater Sci, 2018 Mar 07.
    PMID: 29511758 DOI: 10.1039/c7bm01186e
    Hydrogel particles that can be engineered to compartmentally culture cells in a three-dimensional (3D) and high-throughput manner have attracted increasing interest in the biomedical area. However, the ability to generate hydrogel particles with specially designed structures and their potential biomedical applications need to be further explored. This work introduces a method for fabricating hydrogel particles in an ellipsoidal cap-like shape (i.e., ellipsoidal cap-like hydrogel particles) by employing an open-pore anodic aluminum oxide membrane. Hydrogel particles of different sizes are fabricated. The ability to produce ellipsoidal cap-like magnetic hydrogel particles with controlled distribution of magnetic nanoparticles is demonstrated. Encapsulated cells show high viability, indicating the potential for using these hydrogel particles as structure- and remote-controllable building blocks for tissue engineering application. Moreover, the hydrogel particles are also used as sacrificial templates for fabricating ellipsoidal cap-like concave wells, which are further applied for producing size controllable cell aggregates. The results are beneficial for the development of hydrogel particles and their applications in 3D cell culture.
  11. Zhang L, Wong LR, Wong P, Shen W, Yang S, Huang L, et al.
    Brain Behav Immun Health, 2023 Mar;28:100599.
    PMID: 36817510 DOI: 10.1016/j.bbih.2023.100599
    Baicalein (BE) has both antioxidant and anti-inflammatory effects. It has also been reported able to improve cerebral blood circulation in brain ischemic injury. However, its chronic efficacy and metabolomics in Alzheimer's disease (AD) remain unknown. In this study, BE at 80 mg/kg was administrated through the oral route in J20 AD transgenic mice aged from aged 4 months to aged 10 months. Metabolic- and neurobehavioural phenotyping was done before and after 6 months' treatment to evaluate the drug efficacy and the relevant mechanisms. Meanwhile, molecular docking was used to study the binding affinity of BE and poly (ADP-ribose) polymerase-1 (PARP-1) which is related to neuronal injury. The open field test showed that BE could suppress hyperactivity in J20 mice and increase the frequency of the target quadrant crossing in the Morris Water Maze test. More importantly, BE restored cerebral blood flow back to the normal level after the chronic treatment. A 1H NMR-based metabolomics study showed that BE treatment could restore the tricarboxylic acid cycle in plasma. And such a treatment could suppress oxidative stress, inhibit neuroinflammation, alleviate mitochondrial dysfunction, improve neurotransmission, and restore amino homeostasis via starch and sucrose metabolism and glycolipid metabolism in the cortex and hippocampus, which could affect the behavioural and cerebral blood flow. These findings showed that BE is a potential therapeutic agent for AD.
  12. Yap CJ, Lam SM, Sin JC, Zeng H, Li H, Huang L, et al.
    Environ Sci Pollut Res Int, 2023 Sep;30(42):96272-96289.
    PMID: 37566326 DOI: 10.1007/s11356-023-29165-6
    Attributable to the prosperous production growth of palm oil in Malaysia, the generated palm oil mill effluent (POME) poses a high threat owing to its highly polluted characteristic. Urged by the escalating concern of environmental conservation, POME pollution abatement and potential energy recovery from the effluent are flagged up as a research topic of interest. In this study, a cutting-edge photocatalytic fuel cell (PFC) system with employment of ZnO/Zn nanorod array (NRA) photoanode, CuO/Cu cathode, and persulfate (PS) oxidant was successfully designed to improve the treatment of POME and simultaneous energy production. The photoelectrodes were fabricated and characterized by field emission scanning electron microscopy with energy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Brunauer, Emmett, and Teller analysis (BET). Owing to the properties of strong oxidant of PS, the proposed PFC/PS system has exhibited exceptional performance, attaining chemical oxygen demand (COD) removal efficiency of 96.2%, open circuit voltage (Voc) of 740.0 mV, short circuit current density (Jsc) of 146.7 μA cm-2, and power density (Pmax) of 35.6 μW cm-2. The pre-eminent PFC/PS system performance was yielded under optimal conditions of 2.5 mM of persulfate oxidant, POME dilution factor of 1:20, and natural solution pH of 8.51. Subsequently, the postulated photoelectrocatalytic POME treatment mechanism was elucidated by the radical scavenging study and Mott-Schottky (M-S) analysis. The following recycling test affirmed the stability and durability of the photoanode after four continuous repetition usages while the assessed electrical energy efficiency revealed the economic viability of PFC system serving as a post-treatment for abatement of POME. These findings contributed toward enhancing the sustainability criteria and economic viability of palm oil by adopting sustainable and efficient POME post-treatment technology.
  13. Ling L, Huang L, Wang J, Zhang L, Wu Y, Jiang Y, et al.
    Interdiscip Sci, 2023 Dec;15(4):560-577.
    PMID: 37160860 DOI: 10.1007/s12539-023-00570-2
    Soft subspace clustering (SSC), which analyzes high-dimensional data and applies various weights to each cluster class to assess the membership degree of each cluster to the space, has shown promising results in recent years. This method of clustering assigns distinct weights to each cluster class. By introducing spatial information, enhanced SSC algorithms improve the degree to which intraclass compactness and interclass separation are achieved. However, these algorithms are sensitive to noisy data and have a tendency to fall into local optima. In addition, the segmentation accuracy is poor because of the influence of noisy data. In this study, an SSC approach that is based on particle swarm optimization is suggested with the intention of reducing the interference caused by noisy data. The particle swarm optimization method is used to locate the best possible clustering center. Second, increasing the amount of geographical membership makes it possible to utilize the spatial information to quantify the link between different clusters in a more precise manner. In conclusion, the extended noise clustering method is implemented in order to maximize the weight. Additionally, the constraint condition of the weight is changed from the equality constraint to the boundary constraint in order to reduce the impact of noise. The methodology presented in this research works to reduce the amount of sensitivity the SSC algorithm has to noisy data. It is possible to demonstrate the efficacy of this algorithm by using photos with noise already present or by introducing noise to existing photographs. The revised SSC approach based on particle swarm optimization (PSO) is demonstrated to have superior segmentation accuracy through a number of trials; as a result, this work gives a novel method for the segmentation of noisy images.
  14. Tan K, Xu P, Huang L, Luo C, Huang J, Fazhan H, et al.
    Sci Total Environ, 2024 Mar 01;914:169892.
    PMID: 38211869 DOI: 10.1016/j.scitotenv.2024.169892
    Global human population has increased dramatically over the past 50 years. As a result, marine fisheries and finfish aquaculture have become increasingly unsustainable, driving bivalve aquaculture to become an important food industry for the production of marine animal protein to support the growing market demand for animal protein. It is projected that the rate of bivalve aquaculture expansion will be greatly accelerated in the near future as the human population continues to increase. Although it is generally believed that unfed bivalve aquaculture has less impact on the environment than finfish aquaculture, the rapid expansion of bivalve aquaculture has raised concerns about its potential negative impact, especially on plankton and benthic community. Therefore, there is an urgent need to update the potential effects of bivalve aquaculture on plankton and benthic community. This article reviews the present state of knowledge on environmental issues related to bivalve aquaculture, and discusses potential mitigation measures for the environmental impacts induced by expansion of bivalve aquaculture. This review provides guidance for scientists and farm managers to clarify the current state of research and identify priority research needs for future bivalve aquaculture research. Therefore, specific management strategies can be formulated for the sustainable development and expansion of bivalve aquaculture.
  15. Leow GY, Lam SM, Sin JC, Zeng H, Li H, Huang L, et al.
    Environ Sci Pollut Res Int, 2024 Apr;31(16):23647-23663.
    PMID: 38427169 DOI: 10.1007/s11356-024-32637-y
    Methylene blue (MB) was regarded as a highly toxic and hazardous substance owing to its irreparable hazard and deplorable damage on the ecosystem and the human body. The treatment of this colorant wastewater appeared to be one of the towering challenges in wastewater treatment. In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) with effective MB elimination and its energy recuperation concurrently based on the incorporation of carbide lime as a substrate in a new copper oxide-loaded on carbon cloth (CuO/CC) cathode system was studied. The crucial influencing parameters were also delved, and the MB degradation and chemical oxygen demand (COD) removal efficiencies were correspondingly incremented by 97.3% and 89.1% with maximum power output up to 74.1 mW m-2 at optimal conditions (0.2 g L-1 carbide lime loading and 500 Ω external resistance). The carbide lime with high calcium ion content was greatly conducive for the enrichment of critical microorganism and metabolic activities. The relative abundances of functional bacteria including Proteobacteria and Actinobacteriota were vividly increased. Moreover, the impressive results obtained in printed ink wastewater treatment with a COD removal efficiency of 81.3% and a maximum power density of 58.2 mW m-2, which showcased the potential application of CW-MFC.
  16. Huang L, Liu Z, Li H, Wang Y, Li Y, Zhu Y, et al.
    Geohealth, 2020 Jul 07.
    PMID: 32838101 DOI: 10.1029/2020GH000272
    The outbreak of COVID-19 in China has led to massive lockdowns in order to reduce the spread of the epidemic and control human-to-human transmission. Subsequent reductions in various anthropogenic activities have led to improved air quality during the lockdown. In this study, we apply a widely used exposure-response function to estimate the short-term health impacts associated with PM2.5 changes over the Yangtze River Delta (YRD) region due to COVID-19 lockdown. Concentrations of PM2.5 during lockdown period reduced by 22.9% to 54.0% compared to pre-lockdown level. Estimated PM2.5-related daily premature mortality during lockdown period is 895 (95% confidential interval: 637-1081), which is 43.3% lower than pre-lockdown period and 46.5% lower compared with averages of 2017-2019. According to our calculation, total number of avoided premature death associated PM2.5 reduction during the lockdown is estimated to be 42.4 thousand over the YRD region, with Shanghai, Wenzhou, Suzhou (Jiangsu province), Nanjing, and Nantong being the top five cities with largest health benefits. Avoided premature mortality is mostly contributed by reduced death associated with stroke (16.9 thousand, accounting for 40.0%), ischemic heart disease (14.0 thousand, 33.2%) and chronic obstructive pulmonary disease (7.6 thousand, 18.0%). Our calculations do not support or advocate any idea that pandemics produce a positive note to community health. We simply present health benefits from air pollution improvement due to large emission reductions from lowered human and industrial activities. Our results show that continuous efforts to improve air quality are essential to protect public health, especially over city-clusters with dense population.
  17. Lam SM, Sin JC, Warren Tong MW, Zeng H, Li H, Huang L, et al.
    Chemosphere, 2023 Dec;344:140402.
    PMID: 37838031 DOI: 10.1016/j.chemosphere.2023.140402
    Environmental conservation and energy scarcity have become two core challenges with the ever-increasing advancement of industry, particularly chemical energy rich wastewater comprising refractory organics and pathogenic microbes. Here, a multifunctional photocatalytic fuel cell (PFC) was devised using NiFe2O4 nanoparticle-loaded on pine tree-like ZnO/Zn (NiFe2O4/ZnO/Zn) photoanode and CuO/Cu2O nanorods-loaded on Cu (CuO/Cu2O/Cu) cathode for extracting electricity upon wastewater treatment. When fed with Rhodamine B (RhB) dyestuff, the NiFe2O4/ZnO/Zn-PFC provided the maximum power density (Pmax) of 0.539 mW cm-2 upon visible light irradiation with an average RhB degradation of 85.2%, which were 2.8 and 2.7 times higher than ZnO/Zn, respectively. The remarkable enhanced NiFe2O4/ZnO/Zn-PFC performance was owing to the synergistic effect of pine tree-like structure and Z-scheme heterostructure. The pine tree-like with high surface area was not only for effective harnessing photon energies but also provided more directional routes for rapid segregation and transport of carriers and higher interface contacting areas with electrolyte. Through a series of systematic characterizations, the Z-scheme heterostructure mechanism of the system and organics degradation pathway were also speculated. Additionally, the performance of the NiFe2O4/ZnO/Zn-PFC in industry printing wastewater showed Pmax of 0.600 mW cm-2, which was considerably impressive as real wastewater was challenging to accomplish. The phytotoxicity outcome also manifested that the comprehensive toxicity of RhB was eradicated after PFC treatment. Lastly, the excellent recyclability and the pronounced bactericidal effect towards Escherichia coli and Staphylococcus aureus were other attributions which enabled the NiFe2O4/ZnO/Zn-PFC for possible practical application.
  18. Cai Q, Song Q, Jiang K, Lin Y, Zhang Y, Zhang J, et al.
    Front Chem, 2023;11:1193188.
    PMID: 37324558 DOI: 10.3389/fchem.2023.1193188
    Introduction: Taxus species are used as medicinal plants all over the world. The leaves of Taxus species are sustainable medicinal resources that are rich in taxoids and flavonoids. However, traditional identification methods cannot effectively identify Taxus species on the basis of leaces used as raw medicinal materials, because their appearance and morphological characteristics are almost the same, and the probability of error identification increases in accordance with the subjective consciousness of the experimenter. Moreover, although the leaves of different Taxus species have been widely used, their chemical components are similar and lack systematic comparative research. Such a situation is challenging for quality assessment. Materials and methods: In this study, ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry combined with chemometrics was applied for the simultaneous determination of eight taxoids, four flavanols, five flavonols, two dihydroflavones, and five biflavones in the leaves of six Taxus species, namely, T. mairei, T. chinensis, T. yunnanensis, T. wallichiana, T. cuspidata, and T. media. Chemometric methods, including hierarchical cluster analysis, principal component analysis, orthogonal partial least squares-discriminate analysis, random forest iterative modeling, and fisher linear discriminant analysis, were utilized to differentiate and evaluate the six Taxus species. Results: This proposed method exhibited good linearity (R 2 = 0.9999-0.9972) with a lower quantification limits of 0.94-3.05 ng/mL for all analytes. The intra- and inter-day precisions were within 6.83%. Six compounds, namely, 7-xylosyl-10-deacetyltaxol, ginkgetin, rutin, aromadendrin, 10-deacetyl baccatin III, and epigallocatechin, were identified through chemometrics for the first time. These compounds can be used as important chemical markers to distinguish the above six Taxus species rapidly. Conclusion: This study established a method for determination of the leaves of six Taxus species, and revealing the differences in the chemical components of these six Taxus species.
  19. Huang L, Ahmad NH, Juneja V, Stapp-Kamotani E, Gabiola J, Minocha U, et al.
    Food Microbiol, 2024 Apr;118:104420.
    PMID: 38049265 DOI: 10.1016/j.fm.2023.104420
    During commercial production of liquid egg yolk (LEY), phospholipase A2 (PLA2) is used to improve its emulsification capacity and thermal stability. The enzymatic treatment may occur at elevated temperatures such as 50 °C, potentially allowing foodborne pathogens, such as Bacillus cereus, to grow. Little knowledge is available concerning growth of B. cereus in LEY during PLA2 treatment. Therefore, the objective of this study was to investigate the growth kinetics of B. cereus during PLA2 treatment using pathogenic B. cytotoxicus NVH391-98, the most thermotolerant member in the B. cereus group, as a surrogate. Inoculated LEY samples were placed in precision programmable incubators to observe the growth of B. cytotoxicus NVH391-98 under multiple isothermal and dynamic temperature conditions between 20 and 53 °C. The bacterial growth was described using the differential Baranyi model coupled with two different secondary models. The kinetic parameters were determined using one-step dynamic inverse analysis of multiple growth curves. The least square method was used in combination with the 4th order Runge-Kutta method to solve the differential Baranyi model using multiple growth curves to determine the cardinal kinetic parameters. The results showed that B. cytotoxicus NVH391-98 can grow prolifically at 50 °C. The estimated minimum, optimum and maximum temperatures were 16.7 or 18.5, 47.8 or 48.1, and 52.1 or 52.4 °C, respectively, depending on the secondary models, with an optimum growth rate of 2.1 log colony-forming-unit (CFU)/g per hour. The dynamic model is validated using isothermal curves with reasonable accuracy. B. cytotoxicus died off slowly at 15 °C. At 55 °C, thermal inactivation was observed, with a D value of approximately 2.7 h. Holding at 55 °C or below 15 °C can effectively prevent the growth of B. cytotoxicus in egg yolk.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links