Displaying all 4 publications

Abstract:
Sort:
  1. Jha K, Tyagi YK, Kumar R, Sharma S, Huzaifah MRM, Li C, et al.
    Polymers (Basel), 2021 Sep 24;13(19).
    PMID: 34641075 DOI: 10.3390/polym13193260
    In this investigation, biodegradable composites were fabricated with polycaprolactone (PCL) matrix reinforced with pine cone powder (15%, 30%, and 45% by weight) and compatibilized with graphite powder (0%, 5%, 10%, and 15% by weight) in polycaprolactone matrix by compression molding technique. The samples were prepared as per ASTM standard and tested for dimensional stability, biodegradability, and fracture energy with scanning electron micrographs. Water-absorption and thickness-swelling were performed to examine the dimensional stability and tests were performed at 23 °C and 50% humidity. Results revealed that the composites with 15 wt % of pine cone powder (PCP) have shown higher dimensional stability as compared to other composites. Bio-composites containing 15-45 wt % of PCP with low graphite content have shown higher disintegration rate than neat PCL. Fracture energy for crack initiation in bio-composites was increased by 68% with 30% PCP. Scanning electron microscopy (SEM) of the composites have shown evenly-distributed PCP particles throughout PCL-matrix at significantly high-degrees or quantities of reinforcing.
  2. Khare JM, Dahiya S, Gangil B, Ranakoti L, Sharma S, Huzaifah MRM, et al.
    Polymers (Basel), 2021 Oct 19;13(20).
    PMID: 34685366 DOI: 10.3390/polym13203607
    In polymer composites, synthetic fibers are primarily used as a chief reinforcing material, with a wide range of applications, and are therefore essential to study. In the present work, we carried out the erosive wear of natural and synthetic fiber-based polymer composites. Glass fiber with jute and Grewia optiva fiber was reinforced in three different polymer resins: epoxy, vinyl ester and polyester. The hand lay-up method was used for the fabrication of composites. L16 orthogonal array of Taguchi method used to identify the most significant parameters (impact velocity, fiber content, and impingement angle) in the analysis of erosive wear. ANOVA analysis revealed that the most influential parameter was in the erosive wear analysis was impact velocity followed by fiber content and impingement angle. It was also observed that polyester-based composites exhibited the highest erosive wear followed by vinyl ester-based composites, and epoxy-based composites showed the lowest erosive wear. From the present study, it may be attributed that the low hardness of the polyester resulting in low resistance against the impact of erodent particles. The SEM analysis furthermore illustrates the mechanism took place during the wear examination of all three types of composites at highest fiber loading. A thorough assessment uncovers brittle fractures in certain regions, implying that a marginal amount of impact forces was also acting on the fabricated samples. The developed fiber-reinforced polymer sandwich composite materials possess excellent biocompatibility, desirable promising properties for prosthetic, orthopaedic, and bone-fracture implant uses.
  3. Norrrahim MNF, Huzaifah MRM, Farid MAA, Shazleen SS, Misenan MSM, Yasim-Anuar TAT, et al.
    Polymers (Basel), 2021 Aug 31;13(17).
    PMID: 34503011 DOI: 10.3390/polym13172971
    The utilization of lignocellulosic biomass in various applications has a promising potential as advanced technology progresses due to its renowned advantages as cheap and abundant feedstock. The main drawback in the utilization of this type of biomass is the essential requirement for the pretreatment process. The most common pretreatment process applied is chemical pretreatment. However, it is a non-eco-friendly process. Therefore, this review aims to bring into light several greener pretreatment processes as an alternative approach for the current chemical pretreatment. The main processes for each physical and biological pretreatment process are reviewed and highlighted. Additionally, recent advances in the effect of different non-chemical pretreatment approaches for the natural fibres are also critically discussed with a focus on bioproducts conversion.
  4. Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, et al.
    Polymers (Basel), 2021 Sep 30;13(19).
    PMID: 34641185 DOI: 10.3390/polym13193365
    A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links