Displaying publications 1 - 20 of 80 in total

Abstract:
Sort:
  1. Akmal, M.N., Intan-Shameha, A.R., Ajat, M., Ideris, A.
    Jurnal Veterinar Malaysia, 2017;29(2):14-19.
    MyJurnal
    Edible bird’s nest (EBN) is an emergent industry in Malaysia. In 2016, EBN worth RM 1.2 billion with the total production of 228-tonne metrics. EBN is salivary secretion of swiftlets (Aerodramus spp.) that contained various nutritive values. Back in Tang Dynasty, it had been recognized as a natural product with broad medicinal effects. Recently, various scientific studies have been done to elucidate the medicinal properties of this precious food. For the past 10 years, antiviral effects of EBN had been explained via in-vitro and in-vivo well-designed researches, in which generally EBN is exerting a good alternative food for prophylactic and therapeutic agent against Influenza A virus infection in the laboratory setting. The limited study had been done to identify the bioactive ingredient of EBN that have antiviral properties. Nevertheless, based on the previous nutritional studies, some contents of EBN have been hypothesised to serve as an antiviral agent, and comprehensive study is required to explicate those claimed. The aim of this paper is to review on the recent discovery pertaining to the potential antiviral effect of EBN in the cell culture and animal model studies.
  2. Abdullah JM, Mustafa Z, Ideris A
    Biomed Res Int, 2014;2014:386470.
    PMID: 25243137 DOI: 10.1155/2014/386470
    Glioblastoma multiforme (GBM), or grade IV glioma, is one of the most lethal forms of human brain cancer. Current bioscience has begun to depict more clearly the signalling pathways that are responsible for high-grade glioma initiation, migration, and invasion, opening the door for molecular-based targeted therapy. As such, the application of viruses such as Newcastle disease virus (NDV) as a novel biological bullet to specifically target aberrant signalling in GBM has brought new hope. The abnormal proliferation and aggressive invasion behaviour of GBM is reported to be associated with aberrant Rac1 protein signalling. NDV interacts with Rac1 upon viral entry, syncytium induction, and actin reorganization of the infected cell as part of the replication process. Ultimately, intracellular stress leads the infected glioma cell to undergo cell death. In this review, we describe the characteristics of malignant glioma and the aberrant genetics that drive its aggressive phenotype, and we focus on the use of oncolytic NDV in GBM-targeted therapy and the interaction of NDV in GBM signalling that leads to inhibition of GBM proliferation and invasion, and subsequently, cell death.
  3. Ideris A, Ibrahim AL, Spradbrow PB
    Avian Pathol, 1990 Apr;19(2):371-84.
    PMID: 18679945
    The Australian, heat-resistant, a virulent V4 strain of Newcastle disease (ND) virus was selected for further heat resistance to give a variant designated V4-UPM. V4-UPM was sprayed on to food pellets which were fed to chickens in amounts calculated to give about 10(6) EID50 per chicken. Chickens vaccinated only once by feeding developed no haemagglutination-inhibition (HI) antibodies and were not protected against challenge with a viscerotropic velogenic strain of ND virus. Chickens given food pellet vaccine at 3 and 6 weeks of age developed HI antibodies and were substantially protected against parenteral and contact challenge with virulent ND virus. Similar protection was achieved when the V4-UPM vaccine was given intranasally on two occasions or when the vaccine virus was allowed to spread by contact from intranasally vaccinated chickens to nonvaccinated chickens. Heat resistant ND vaccine incorporated in food pellets may provide a method for protecting village chickens against ND in tropical countries.
  4. Mehrbod P, Omar AR, Hair-Bejo M, Haghani A, Ideris A
    Biomed Res Int, 2014;2014:872370.
    PMID: 25478576 DOI: 10.1155/2014/872370
    The influenza virus (IV) is known to be a resistant virus with frequent mutations, causing severe respiratory diseases in the upper respiratory system. Public health concerns about clinical efficacy of all conventional drugs are ambiguous; therefore, finding additional therapeutic agents is critical to prevent and control influenza outbreaks. Influenza is associated with the induction of proinflammatory cytokines. Scientists have reported that anti-inflammatory drugs, with pleiotropic effects, reduce the burden of severe influenza diseases. Therefore, statins, which are cardioprotective drugs with anti-inflammatory and immunomodulatory effects, may help patients suffering from influenza virus (IV). This review delineates the potential use of statins as an alternative therapy in treating influenza related illness.
  5. Mehrbod P, Ideris A, Omar AR, Hair-Bejo M
    PMID: 24708698 DOI: 10.1186/1472-6882-14-131
    Influenza virus is still a severe respiratory disease affecting human and other species. As conventional drugs are not recommended for long time because of side effects and drug resistance occurrence, traditional medication has been focused as alternative remedy. HESA-A is a natural compound from herbal-marine origin. Previous studies have reported the therapeutic properties of HESA-A on psoriasis vulgaris and different types of cancers and we also showed its anti-inflammatory effects against influenza A infection.
  6. Berhanu A, Ideris A, Omar AR, Bejo MH
    Virol J, 2010;7:183.
    PMID: 20691110 DOI: 10.1186/1743-422X-7-183
    Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a highly contagious disease of birds and has been one of the major causes of economic losses in the poultry industry. Despite routine vaccination programs, sporadic cases have occasionally occurred in the country and remain a constant threat to commercial poultry. Hence, the present study was aimed to characterize NDV isolates obtained from clinical cases in various locations of Malaysia between 2004 and 2007 based on sequence and phylogenetic analysis of partial F gene and C-terminus extension length of HN gene.
  7. Omar AR, Kim CL, Bejo MH, Ideris A
    J Vet Sci, 2006 Sep;7(3):241-7.
    PMID: 16871018
    The ability of a heat-inactivated whole virus from a highly virulent infectious bursal disease virus (hvIBDV) and VP2 protein from hvIBDV expressed in E. coli provided protection against a hvIBDV challenge in specificpathogen-free (SPF) chickens. Six out of seven chickens that were injected three times with crude VP2 protein developed significant antibody titer against IBDV. However, only four out of the seven chickens survived the hvIBDV challenge. Despite showing low antibody titer profiles, all chickens immunized with the heat-inactivated whole virus also survived the challenged with hvIBDV. However, all of these chickens had bursal atrophy and mild to moderate depletion of lymphocytes. Thus, antibodies raised against IBDV VP2 protein expressed in E. coli and denatured IBDV proteins induced some degree of protection against mortality but not against bursal damage following challenge with hvIBDV.
  8. Jazayeri SD, Ideris A, Shameli K, Moeini H, Omar AR
    Int J Nanomedicine, 2013;8:781-90.
    PMID: 23459681 DOI: 10.2147/IJN.S39074
    In order to develop a systemically administered safe and effective nonviral gene delivery system against avian influenza virus (AIV) that induced cytokine expression, the hemagglutinin (H5) gene of AIV, A/Ck/Malaysia/5858/04 (H5N1) and green fluorescent protein were cloned into a coexpression vector pIRES (pIREGFP-H5) and formulated using green synthesis of silver nanoparticles (AgNPs) with poly(ethylene glycol) and transfected into primary duodenal cells taken from 18-day-old specific-pathogen-free chick embryos. The AgNPs were prepared using moderated temperature and characterized for particle size, surface charge, ultraviolet-visible spectra, DNA loading, and stability. AgNPs and AgNP-pIREGFP-H5 were prepared in the size range of 13.9 nm and 25 nm with a positive charge of +78 ± 0.6 mV and +40 ± 6.2 mV, respectively. AgNPs with a positive surface charge could encapsulate pIREGFP-H5 efficiently. The ultraviolet-visible spectra for AgNP-pIREGFP-H5 treated with DNase I showed that the AgNPs were able to encapsulate pIREGFP-H5 efficiently. Polymerase chain reaction showed that AgNP-pIREGFP-H5 entered into primary duodenal cells rapidly, as early as one hour after transfection. Green fluorescent protein expression was observed after 36 hours, peaked at 48 hours, and remained stable for up to 60 hours. In addition, green fluorescent protein expression generally increased with increasing DNA concentration and time. Cells were transfected using Lipocurax in vitro transfection reagent as a positive control. A multiplex quantitative mRNA gene expression assay in the transfected primary duodenal cells via the transfection reagent and AgNPs with pIREGFP-H5 revealed expression of interleukin (IL)-18, IL-15, and IL-12β.
  9. Raha AR, Ross E, Yusoff K, Manap MY, Ideris A
    J. Biochem. Mol. Biol. Biophys., 2002 Feb;6(1):7-11.
    PMID: 12186776
    An erythromycin resistance plasmid, pAJ01 was isolated from Loctococcus lactis isolate C5 that was isolated from a healthy two-week-old chicken cecum. A 4 kb plasmid was transformed into plasmidless L. lactis MG1363 before a restriction endonuclease map was constructed. It was then fused with pUC19 to form pAJ02, which can replicate in Escherichia coli XLI-Blue as well as L. lactis MG1363. The plasmid was stably maintained in Lactococcus for more than 100 generations.
  10. Bell IG, Nicholls PJ, Norman C, Ideris A, Cross GM
    Aust. Vet. J., 1991 Mar;68(3):97-101.
    PMID: 2043098
    Meat chickens housed on a commercial broiler farm in Australia were vaccinated once at 10 to 11 days-of-age by aerosol with live V4 Newcastle disease virus (NDV) vaccine. Groups of vaccinated and unvaccinated birds were flown to Malaysia, where they were challenged with a virulent strain of NDV. Survival rates in vaccinated chickens challenged 7, 14, 21 or 31 d after vaccination were 0.47, 0.77, 0.97 and 0.92, respectively. All unvaccinated chickens died due to Newcastle disease (ND) following challenge. Chickens in Australia and Malaysia were bled and the serums tested for haemagglutination-inhibiting (HI) antibody to NDV. Many vaccinated birds with no detectable antibody, and all birds with a log2 titre of 2 or greater, survived challenge. The results showed that this V4 vaccine induced protective immunity in a significant proportion of chickens within 7 d of mass aerosol vaccination. This early immunity occurred in the absence of detectable circulating HI antibody. Non-HI antibody mediated immunity continued to provide protection up to 31 d after vaccination. Almost all vaccinated birds were protected within 3 w of vaccination. It is concluded that the V4 vaccine is efficacious and could be useful during an outbreak of virulent ND in Australia.
  11. Ghrici M, El Zowalaty M, Omar AR, Ideris A
    Oncol Rep, 2013 Sep;30(3):1035-44.
    PMID: 23807159 DOI: 10.3892/or.2013.2573
    Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications.
  12. Ghrici M, El Zowalaty M, Omar AR, Ideris A
    Int J Mol Med, 2013 Mar;31(3):525-32.
    PMID: 23337979 DOI: 10.3892/ijmm.2013.1244
    Newcastle disease virus (NDV) AF2240 Malaysian strain is a very virulent avian virus. NDV strain AF2240 was previously demonstrated to induce apoptosis in human breast carcinoma MCF-7 cells. However, at which stage of the NDV life cycle apoptosis is induced and whether NDV replication and protein synthesis are involved in apoptosis induction have yet to be determined. In the present study, we investigated the time course of NDV strain AF2240 nucleoprotein (NP) gene expression and the early apoptotic signs in the form of activation of caspase-8 and mitochondrial transition pore opening. In addition, the induction of apoptosis by both ultraviolet-inactivated and cycloheximide-treated NDV-infected MCF-7 cells were examined. Our findings showed that NDV strain AF2240 induced apoptosis at 1 h post-infection (pi) through activation of mitochondrial transition pore opening and at 2 h through activation of caspase-8, while the NP gene was expressed at 6 h pi. The induced apoptosis was independent of both virus replication and protein synthesis. In conclusion, NDV strain AF2240 induces apoptosis at an early stage of its life cycle, possibly during virus binding or fusion with the cell membrane. The mitochondrial-related pathway may be the central activator in NDV strain AF2240-induced apoptosis.
  13. Alsahami A, Ideris A, Omar A, Ramanoon SZ, Sadiq MB
    Int J Vet Sci Med, 2018 Dec;6(2):186-191.
    PMID: 30564594 DOI: 10.1016/j.ijvsm.2018.06.004
    Newcastle disease (ND) is an endemic disease in Oman's poultry industry and impacts negatively on food security. However, little is known regarding the potential risks of the disease in backyard poultry. The objectives of this study were to determine the seroprevalence of Newcastle disease virus (NDV) in backyard chickens and the herd-level risk factors in Oman. In total, 1383 serum samples were collected from chickens in 139 flocks from nine governorates. Information on associated risk factors was assessed using a semi-structured questionnaire. The samples were tested using commercial indirect ELISA kits.A logistic regression model was applied to assess the associated risk factors. The bird and flock-level NDV seroprevalence was 33.8% (95% Confidence Interval (CI): 12.8-38.6%) and 57.1% (95% CI: 35.7-71.4%), respectively. The highest seroprevalence of antibody to NDV at bird and flock levels was recorded in North Ash Sharqiyah (38.6%) and Al Buraimi (71.4%), respectively. Also, the lowest seroprevalence at bird and flock levels was recorded in Musandam (12.8%) and South Al Batinah (35.7%), respectively. A significant difference in NDV seroprevalence at flock and bird levels was only recorded in Ad Dakhliyah. Factors associated with higher seroprevalence to NDV included absence of a veterinarian in the farm (OR = 5.3; 95% CI: 2.1, 11.7), usage of dead ND vaccine (OR = 2.3; 95% CI: 1.2-4.2), employment of non-permanent staff (OR = 3.9; 95% CI: 1.5, 10.6) and free entry of visitors (OR = 6.2; 95% CI: 2.0, 20.3). In conclusion, the results of this study revealed a high exposure of backyard chickens to NDV and the identified risk factors could be vital in the prevention and control of the disease in Oman.
  14. Aliyu HB, Hair-Bejo M, Omar AR, Ideris A
    Front Vet Sci, 2021;8:643976.
    PMID: 33959650 DOI: 10.3389/fvets.2021.643976
    Vaccination is an essential component in controlling infectious bursal disease (IBD), however, there is a lack of information on the genetic characteristics of a recent infectious bursal disease virus (IBDV) that was isolated from IBD vaccinated commercial flocks in Malaysia. The present study investigated 11 IBDV isolates that were isolated from commercial poultry farms. The isolates were detected using reverse transcription-polymerase chain reaction (RT-PCR) targeting the hypervariable region (HVR) of VP2. Based on the HVR sequences, five isolates (IBS536/2017, IBS624/2017, UPM766/2018, UPM1056/2018, and UPM1432/2019) were selected for whole-genome sequencing using the MiSeq platform. The nucleotide and amino acid (aa) sequences were compared with the previously characterized IBDV strains. Deduced aa sequences of VP2HVR revealed seven isolates with 94-99% aa identity to very virulent strains (genogroup 3), two isolates with 97-100% aa identity to variant strains (genogroup 2), and two strains with 100% identity to the vaccine strain (genogroup 1) of IBDV. The phylogenetic analysis also showed that the isolates formed clusters with the respective genogroups. The characteristic motifs 222T, 249K, 286I, and 318D are typical of the variant strain and were observed for UPM1219/2019 and UPM1432/2019. In comparison, very virulent residues such as 222A, 249Q, 286T, and 318G were found for the vvIBDV, except for the UPM1056/2018 strain with a A222T substitution. In addition, the isolate has aa substitutions such as D213N, G254D, S315T, S317R, and A321E that are not commonly found in previously reported vvIBDV strains. Unlike the other vvIBDVs characterized in this study, UPM766/2018 lacks the MLSL aa residues in VP5. The aa tripeptides 145/146/147 (TDN) of VP1 were conserved for the vvIBDV, while a different motif, NED, was observed for the Malaysian variant strain. The phylogenetic tree showed that the IBDV variant clustered with the American and Chinese variant viruses and are highly comparable to the novel Chinese variants, with 99.9% identity. Based on the sequences and phylogenetic analyses, this is the first identification of an IBDV variant being reported in Malaysia. Further research is required to determine the pathogenicity of the IBDV variant and the protective efficacy of the current IBD vaccines being used against the virus.
  15. Emadi M, Jahanshiri F, Kaveh K, Hair-Bejo M, Ideris A, Alimon AR
    Avian Pathol, 2011 Feb;40(1):63-72.
    PMID: 21331949 DOI: 10.1080/03079457.2010.539590
    To explore the effects of the combination of tryptophan (Trp) and arginine (Arg) on growth performance, serum parameters and immune response of broiler chickens challenged with intermediate plus strain of infectious bursal disease virus vaccine, an in vivo experiment was conducted. A corn-soybean meal-based diet containing different levels of Arg and Trp was used. Cobb500 male broiler chickens from 0 to 49 days of age were subjected to a diet supplemented with the combination of Trp and Arg. Growth performance parameters and serum parameters were measured at 27 and 49 days of age. To evaluate the immunomodulatory effects of the combination of Trp and Arg on the challenged chickens, we measured the serum levels of interferon-α, interferon-γ and immunoglobulin G at 27, 35, 42, and 49 days of age. The results showed that the three evaluated immune system parameters including interferon-α, interferon-γ and immunoglobulin G were significantly enhanced after treatment. This enhancement resulted in the recovery of infectious bursal disease virus-infected chickens compared with controls as confirmed by histopathological examinations. Moreover, serum parameters such as albumin and total protein increased, whereas the treatment decreased (P<0.05) the feed:gain ratio, aspartate amino-transferase, alkaline phosphatase, lactic dehydrogenase, triglyceride and cholesterol. These findings suggest that the combination of Arg and Trp has a regulatory effect on growth performance. Moreover, it modulates the systemic immune response against infectious bursal disease.
  16. Raji AA, Ideris A, Bejo MH, Omar AR
    Avian Pathol, 2022 Feb;51(1):51-65.
    PMID: 34726999 DOI: 10.1080/03079457.2021.2000939
    ABSTRACTChicken astrovirus (CAstV) has for over a decade been associated with runting stunting syndrome, severe kidney disease and visceral gout, and white chick syndrome. However, knowledge of the molecular characteristics and pathogenicity of the virus in day-old specific pathogen-free (SPF) chicks is scarce. This study focused on the characterization of near-complete genome of three Malaysian CAstV isolates following virus propagation in SPF embryonated chicken eggs and pathogenicity in day-old SPF chicks. The three isolates demonstrated unique features including a point mutation in their intergenic regions and an additional stem-loop II-like motif (s2m) in ORF-2. Pairwise sequence comparison and phylogenetic analysis of the ORF-2 amino acid sequence of the three isolates revealed an identity share of 86-91% with group B CAstVs while forming a new subgroup in addition to the known four subgroups (Bi, Bii, Biii and Biv) that exhibit high identity of between 95% and 100% within the subgroups. In the pathogenicity study, birds in the infected and exposed sentinel groups exhibited lethargy and diarrhoea 3 days post-inoculation (dpi) that declined by 6 dpi, and 20% growth retardation by 9 dpi. Mild lymphocytic aggregates in the duodenum, tubular degeneration and interstitial nephritis were observed in the intestines and kidneys, respectively, in both groups. In addition, the mean virus copy numbers of the cloacal swabs were log10 13.23 at 3 dpi and log10 9.04 at 6 dpi for the infected and exposed sentinels, respectively. The study suggests that the Malaysian isolates should be assigned to a new subgroup, Bv within group B CAstV. RESEARCH HIGHLIGHTSA single run of NGS protocol is capable of generating a near-complete genome sequence of CAstV.The Malaysian CAstV isolates cluster together and exhibit 86-91% identity with published group B CAstVs.The Malaysian CAstVs encode an additional stem-loop II-like motif (s2m) in ORF-2.The isolates are pathogenic to day-old SPF chicks with lesions mainly in the intestine and kidneys.
  17. Aliyu HB, Hamisu TM, Hair Bejo M, Omar AR, Ideris A
    Avian Pathol, 2022 Feb;51(1):76-86.
    PMID: 34842475 DOI: 10.1080/03079457.2021.2006604
    Variant infectious bursal disease virus (vaIBDV) has been identified in various countries with significant economic losses. Recently, the first identification of a variant strain in Malaysia was reported. The pathogenicities of the Malaysian variant, UPM1432/2019, and very virulent infectious bursal disease virus (vvIBDV), UPM1056/2018 strains were comparatively evaluated in specific-pathogen-free (SPF) chickens based on gross and histopathological examinations and viral load. Four-week-old SPF chickens were randomly divided into three groups; group 1 served as the control, while groups 2 and 3 birds were challenged with the vaIBDV and vvIBDV, respectively. Three birds from each group were weighed, euthanized and necropsied at 2, 3, 4, 5, 7 and 21 days post-challenge (dpc). Unlike UPM1056/2018 group, birds from UPM1432/2019 group did not show clinical signs or death. UPM1056/2018 strain caused 11% mortality rate in the infected chickens. The bursal body index (BBIX) for UPM1432/2019- and UPM1056/2018-infected groups was <0.7 from 2 dpc and continued to decrease to 0.49 and 0.45, respectively, at 21 dpc. UPM1432/2019 strain was more persistent in the bursa than UPM1056/2018 strain. Both strains induced similar pathological lesions in SPF chicks. These results indicate that the Malaysian vaIBDV severely damaged the immune organs of chickens and was more persistent in bursal tissue than vvIBDV. The study provides insight into the pathogenicity of the variant strain as further study may be required to evaluate the efficacy of the currently available IBD vaccines in Malaysia against the strain. RESEARCH HIGHLIGHTSEmerging Malaysian variant IBDV caused severe bursal damage without mortality.Atypical vvIBDV induced bursal atrophy with inflammatory response and caused low mortality.Malaysian variant IBDV was more persistent in bursal tissue than vvIBDV.
  18. Rajik M, Omar AR, Ideris A, Hassan SS, Yusoff K
    Int J Biol Sci, 2009 Aug 08;5(6):543-8.
    PMID: 19680476
    Avian influenza viruses (AIV), the causative agent of avian flu or bird flu, cause widespread morbidity and mortality in poultry. The symptoms of the disease range from mild flu like symptoms to death. These viruses possess two important surface glycoproteins, namely hemagglutinin (HA) and neuraminidase (NA) against which neutralizing antibodies are produced. Due to the highly mutative nature of the genes which encode these proteins, the viruses often confer resistance to the current anti-viral drugs making the prevention and treatment of infection challenging. In our laboratory, we have recently identified a novel anti-viral peptide (P1) against the AIV H9N2 from a phage displayed peptide library. This peptide inhibits the replication of the virus in ovo and in vitro by its binding to the HA glycoprotein. In the current study, we demonstrate that the peptide inhibits the virus replication by preventing the attachment to the host cell but it does not have any effect on the viral fusion. The reduction in the viral nucleoprotein (NP) expression inside the host cell has also been observed during the peptide (P1) treatment. This novel peptide may have the potential to be developed as a therapeutic agent for the treatment and control of avian influenza virus H9N2 infections.
  19. Alsahami AA, Ideris A, Omar A, Ramanoon SZ, Sadiq MB
    Int J Vet Sci Med, 2018 Dec;6(2):248-252.
    PMID: 30564604 DOI: 10.1016/j.ijvsm.2018.08.007
    Newcastle disease (ND) remains an important enzootic disease in chickens in several parts of the world. With the increasing reports of virulence and genetic diversity of the causative agent; Newcastle disease virus (NDV), there is a need to identify the circulating NDV in specific regions. In Oman, to this moment, such information is still lacking. The aim of this study was to isolate and characterize the NDV from ND outbreaks from commercial farms in Oman. Following suspected outbreaks of ND in three commercial farms in 2017, a total of 30 carcasses (10 from each flock) of adult chickens were subjected to necropsy for gross and histopathological examination, virus isolation and molecular methods. Specifically, haemagglutination inhibition (HI) test and reverse transcription-polymerase chain reaction (RT-PCR) assay were used for the virus detection and confirmation, respectively. Lesions were suggestive of viscerotropic velogenic form of ND based on gross and histopathological examinations. Isolation of NDV was present in 4 cases and further confirmed by RT-PCR following the target of the partial fusion protein gene of the viral genome. The sequence of the partial fusion gene was determined and phylogenetic tree was constructed based on the partial length F gene of 4 Omani isolates and 65 previously published NDVs. The findings predicted that the Omani isolates had high homology (99%) with the isolate from Pakistan belonging to genotype VII. Subsequently, the isolated pathotype was identified as the virulent NDV. This study serves as a basic work for further research on the analysis and phenotyping of NDV in the Sultanate of Oman. Improved monitoring and surveillance of the disease is important for proper preventive measures.
  20. Ong WT, Omar AR, Ideris A, Hassan SS
    J Virol Methods, 2007 Sep;144(1-2):57-64.
    PMID: 17512062
    Avian influenza viruses are pathogens of economical and public health concerns. However, infections caused by low pathogenic avian influenza particularly H9N2 subtype are not associated with clear clinical features. Hence, rapid detection and subtyping of the virus will enable immediate measures to be implemented for preventing widespread transmission. This study highlights the development of a multiplex real-time reverse-transcriptase polymerase chain reaction (RRT-PCR) assay using SYBR Green 1 chemistry for universal detection of avian influenza viruses and specific subtyping of H9N2 isolates based on melting temperatures (T(m)) discriminations. Three melting peaks generated simultaneously at temperatures 85.2+/-1.0, 81.9+/-0.9 and 78.7+/-0.9 degrees C represent NP, H9 and N2 gene products, respectively. The RRT-PCR assay was about 10-100-fold more sensitive when compared to the conventional RT-PCR method using reference H9N2 isolate. In addition, the RRT-PCR assay was 100% sensitive as well as 92% specific according to the standard virus isolation method in detecting experimentally infected specific-pathogen-free (SPF) chickens.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links