Displaying all 2 publications

Abstract:
Sort:
  1. Rizal S, Alfatah T, Abdul Khalil HPS, Yahya EB, Abdullah CK, Mistar EM, et al.
    Polymers (Basel), 2022 Nov 25;14(23).
    PMID: 36501521 DOI: 10.3390/polym14235126
    The development of bioplastic materials that are biobased and/or degradable is commonly presented as an alleviating alternative, offering sustainable and eco-friendly properties over conventional petroleum-derived plastics. However, the hydrophobicity, water barrier, and antimicrobial properties of bioplastics have hindered their utilization in packaging applications. In this study, lignin nanoparticles (LNPs) with a purification process were used in different loadings as enhancements in a Kappaphycus alvarezii matrix to reduce the hydrophilic nature and improve antibacterial properties of the matrix and compared with unpurified LNPs. The influence of the incorporation of LNPs on functional properties of bioplastic films, such as morphology, surface roughness, structure, hydrophobicity, water barrier, antimicrobial, and biodegradability, was studied and found to be remarkably enhanced. Bioplastic film containing 5% purified LNPs showed the optimum enhancement in almost all of the ultimate performances. The enhancement is related to strong interfacial interaction between the LNPs and matrix, resulting in high compatibility of films. Bioplastic films could have additional advantages and provide breakthroughs in packaging materials for a wide range of applications.
  2. Rizal S, Saharudin NI, Olaiya NG, Khalil HPSA, Haafiz MKM, Ikramullah I, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916094 DOI: 10.3390/molecules26072008
    The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links