Displaying all 4 publications

Abstract:
Sort:
  1. Safitri E, Humaira H, Murniana M, Nazaruddin N, Iqhrammullah M, Md Sani ND, et al.
    Polymers (Basel), 2021 Apr 14;13(8).
    PMID: 33919956 DOI: 10.3390/polym13081276
    A simple optical pH sensor based on immobilization, Dioscorea alata L. anthocyanin methanol extract, onto a pectin-chitosan polyelectrolyte complex (pectin-chitosan PEC), has been successfully fabricated. The optical pH sensor was manufactured as a membrane made of pectin-chitosan PEC and the extracted anthocyanin. This sensor has the highest sensitivity of anthocyanin content at 0.025 mg/L in phosphate buffer and 0.0375 mg/L in citrate buffer. It also has good reproducibility with a relative standard deviation (%RSD) of 7.7%, and gives a stable response at time values greater than 5 min from exposure in a buffer solution, and the sensor can be utilized within five days from its synthesis. This optical pH sensor has been employed to determine saliva pH of people of different ages and showed no significant difference when compared to a potentiometric method.
  2. Nazaruddin N, Afifah N, Bahi M, Susilawati S, Sani NDM, Esmaeili C, et al.
    F1000Res, 2021;10:422.
    PMID: 34527216 DOI: 10.12688/f1000research.52836.2
    A simple optical pH sensor using the active compound anthocyanin (ACN), derived Ruellia tuberosa L. flower immobilized in a pectin membrane matrix, was been fabricated and employed to monitor the freshness of tilapia fish at room temperature and 4 oC storage. The quantitative pH values were measured based on the UV-Vis spectroscopy absorbance. The optimum pectin weight and ACN concentrations were 0.1% and 0.025 mg/L. The sensor showed good sensitivity at 0.03 M phosphate buffer solution. The sensor's reproducibility was evaluated using 10 replicate sensors where a standard deviation of 0.045 or relative standard deviation of 9.15 was achieved. The sensor displayed an excellent response after 10 minutes of exposure, possessing a response stability for 10 consecutive days. The decrease in pH value of the Tilapia fish from 7.3 to 5 was observed in a 48 hour test, which can be used as the parameter when monitoring fish freshness. Overall, this reported optical pH sensor has a novelty as it could be used to monitor the rigor mortis phase of fish meat, which is useful in food industry.
  3. Iqhrammullah M, Marlina, Hedwig R, Karnadi I, Kurniawan KH, Olaiya NG, et al.
    Polymers (Basel), 2020 Apr 13;12(4).
    PMID: 32294999 DOI: 10.3390/polym12040903
    The use of polymeric material in heavy metal removal from wastewater is trending. Heavy metal removal from wastewater of the industrial process is of utmost importance in green/sustainable manufacturing. Production of absorbent materials from a natural source for industrial wastewater has been on the increase. In this research, polyurethane foam (PUF), an adsorbent used by industries to adsorb heavy metal from wastewater, was prepared from a renewable source. Castor oil-based polyurethane foam (COPUF) was produced and modified for improved adsorption performance using fillers, analyzed with laser-induced breakdown spectroscopy (LIBS). The fillers (zeolite, bentonite, and activated carbon) were added to the COPUF matrix allowing the modification on its surface morphology and charge. The materials were characterized using Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), and thermal gravimetry analysis (TGA), while their adsorption performance was studied by comparing the LIBS spectra. The bentonite-modified COPUF (B/COPUF) gave the highest value of the normalized Pb I (405.7 nm) line intensity (2.3), followed by zeolite-modified COPUF (Z/COPUF) (1.9), and activated carbon-modified COPUF (AC/COPUF) (0.2), which indicates the adsorption performance of Pb2+ on the respective materials. The heavy metal ions' adsorption on the B/COPUF dominantly resulted from the electrostatic attraction. This study demonstrated the potential use of B/COPUF in adsorption and LIBS quantitative analysis of aqueous heavy metal ions.
  4. Iqhrammullah M, Marlina M, Khalil HPSA, Kurniawan KH, Suyanto H, Hedwig R, et al.
    Polymers (Basel), 2020 Jun 09;12(6).
    PMID: 32526903 DOI: 10.3390/polym12061317
    Global pollution from toxic metal waste has resulted in increased research on toxic metal adsorption. A cellulose acetate-polyurethane (CA-PU) film adsorbent was successfully prepared in this research. The cellulose acetate-polyurethane film adsorbent was prepared with a polycondensation reaction between cellulose acetate and methylene diphenyl diisocyanate. The CA-PU bond formation was confirmed by functional group analysis obtained from Fourier transform infrared (FTIR) spectroscopy. The obtained film was characterized for improved tensile and thermal properties with the addition of methylene diphenyl diisocyanate (MDI). The adsorption ability of the obtained film was evaluated with laser-induced breakdown spectroscopy (LIBS). The best film adsorbent from the LIBS was selected and studied for adsorption isotherm. The FTIR analysis confirmed the formation of the CA-PU bond from the polycondensation between cellulose acetate and the methylene diphenyl diisocyanate. The result showed that the addition of methylene diphenyl diisocyanate (MDI) resulted in the urethane network's growth. The characterization result showed an improvement in the morphology, thermal stability, and tensile strength of the film. The LIBS studies showed improvement in the adsorption of Pb2+ with CA-PU compared with the neat CA. The isotherm studies revealed that Pb2+ adsorption by cellulose acetate-polyurethane film adsorbent was heterogeneously dependent on the Freundlich isotherm model (R2 = 0.97044). Overall, the polycondensation method proposed by this study enhanced the Pb2+ removal, and was comparable to those reported in previous studies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links