Displaying all 9 publications

  1. Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U
    Drug Discov. Today, 2017 02;22(2):314-326.
    PMID: 27671487 DOI: 10.1016/j.drudis.2016.09.013
    Dendrimers are novel nanoarchitectures with unique properties including a globular 3D shape, a monodispersed unimicellar nature and a nanometric size range. The availability of multiple peripheral functional groups and tunable surface engineering enable the facile modification of the dendrimer surface with different therapeutic drugs, diagnostic agents and targeting ligands. Drug encapsulation, and solubilizing and passive targeting also equally contribute to the therapeutic use of dendrimers. In this review, we highlight recent advances in the delivery of anticancer drugs using dendrimers, as well as other biomedical and diagnostic applications. Taken together, the immense potential and utility of dendrimers are envisaged to have a significant positive impact on the growing arena of drug delivery and targeting.
  2. Kesharwani P, Gothwal A, Iyer AK, Jain K, Chourasia MK, Gupta U
    Drug Discov. Today, 2017 Jul 08.
    PMID: 28697371 DOI: 10.1016/j.drudis.2017.06.009
    Highly controllable dendritic structural design means dendrimers are a leading carrier in drug delivery applications. Dendrimer- and other nanocarrier-based hybrid systems are an emerging platform in the field of drug delivery. This review is a compilation of increasing reports of dendrimer interactions, such as dendrimer-liposome, dendrimer-carbon-nanotube, among others, known as hybrid carriers. This should prompt entirely new research with promising results for these hybrid carriers. It is assumed that such emerging hybrid nanosystems - from combining two already-established drug delivery platforms - could lead the way for the development of newer delivery systems with multiple applicability for latent theranostic applications in the future.
  3. Choudhury H, Gorain B, Pandey M, Kumbhar SA, Tekade RK, Iyer AK, et al.
    Int J Pharm, 2017 Aug 30;529(1-2):506-522.
    PMID: 28711640 DOI: 10.1016/j.ijpharm.2017.07.018
    Docetaxel (DTX) is one of the important antitumor drugs, being used in several common chemotherapies to control leading cancer types. Severe toxicities of the DTX are prominent due to sudden parenteral exposure of desired loading dose to maintain the therapeutic concentration. Field of nanotechnology is leading to resist sudden systemic exposure of DTX with more specific delivery to the site of cancer. Further nanometric size range of the formulation aid for prolonged circulation, thereby extensive exposure results better efficacy. In this article, we extensively reviewed the therapeutic benefit of incorporating d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS, or simply TPGS) in the nanoparticle (NP) formulation of DTX for improved delivery, tumor control and tolerability. TPGS is well accepted nonionic-ampiphilic polymer which has been identified in the role of emulsifier, stabilizer, penetration enhancer, solubilizer and in protection in micelle. Simultaneously, P-glycoprotein inhibitory activity of TPGS in the multidrug resistant (MDR) cancer cells along with its apoptotic potential are the added advantage of TPGS to be incorporated in nano-chemotherapeutics. Thus, it could be concluded that TPGS based nanoparticulate application is an advanced approach to improve therapeutic efficacy of chemotherapeutic agents by better internalization and sustained retention of the NPs.
  4. Gorain B, Tekade M, Kesharwani P, Iyer AK, Kalia K, Tekade RK
    Drug Discov. Today, 2017 04;22(4):652-664.
    PMID: 28219742 DOI: 10.1016/j.drudis.2016.12.007
    To avoid tissue rejection during organ transplantation, research has focused on the use of tissue engineering to regenerate required tissues or organs for patients. The biomedical applications of hyperbranched, multivalent, structurally uniform, biocompatible dendrimers in tissue engineering include the mimicking of natural extracellular matrices (ECMs) in the 3D microenvironment. Dendrimers are unimolecular architects that can incorporate a variety of biological and/or chemical substances in a 3D architecture to actively support the scaffold microenvironment during cell growth. Here, we review the use of dendritic delivery systems in tissue engineering. We discuss the available literature, highlighting the 3D architecture and preparation of these nanoscaffolds, and also review challenges to, and advances in, the use dendrimers in tissue engineering. Advances in the manufacturing of dendritic nanoparticles and scaffold architectures have resulted in the successful incorporation of dendritic scaffolds in tissue engineering.
  5. Luong D, Kesharwani P, Deshmukh R, Mohd Amin MCI, Gupta U, Greish K, et al.
    Acta Biomater, 2016 10 01;43:14-29.
    PMID: 27422195 DOI: 10.1016/j.actbio.2016.07.015
    Poly(amidoamine) dendrimers (PAMAM) are well-defined, highly branched, nanoscale macromolecules with numerous active amine groups on the surface. PAMAM dendrimer can enhance the solubility of hydrophobic drugs, and with numerous reactive groups on the surface PAMAM dendrimer can be engineered with various functional groups for specific targeting ability. However, in physiological conditions, these amine groups are toxic to cells and limit the application of PAMAM. In the recent years, polyethylene glycol (PEG) conjugation has been the most widely used approach to reduce the toxicity of the active group on dendrimer surface. PEG molecules are known to be inert, non-immunogenic, and non-antigenic with a significant water solubility. PEGylated PAMAM-mediated delivery could not only overcome the limitations of dendrimer such as drug leakage, immunogenicity, hemolytic toxicity, systemic cytotoxicity but they also have the ability to enhance the solubilization of hydrophobic drugs and facilitates the potential for DNA transfection, siRNA delivery and tumor targeting. This review focuses on the recent developments on the application and influence of PEGylation on various biopharmaceutical properties of PAMAM dendrimers.

    STATEMENT OF SIGNIFICANCE: It is well established that dendrimers have demonstrated promising potentials for drug delivery. However, the inherent toxicity poses challenges for its clinical translation. In this regard, PEGylation has helped mitigate some of the toxicity concerns of dendrimers and have paved the way forward for testing its translational potentials. The review is a collection of articles demonstrating the utility of PEGylation of the most studied PAMAM dendrimers. To our knowledge, this is a first such attempt to draw reader's attention, specifically, towards PEGylated PAMAM dendrimers.

  6. Dwivedi N, Shah J, Mishra V, Mohd Amin MC, Iyer AK, Tekade RK, et al.
    J Biomater Sci Polym Ed, 2016 May;27(7):557-80.
    PMID: 26928261 DOI: 10.1080/09205063.2015.1133155
    Worldwide, the cancer appeared as one of the most leading cause of morbidity and mortality. Among the various cancer types, brain tumors are most life threatening with low survival rate. Every year approximately 238,000 new cases of brain and other central nervous system tumors are diagnosed. The dendrimeric approaches have a huge potential for diagnosis and treatment of brain tumor with targeting abilities of molecular cargoes to the tumor sites and the efficiency of crossing the blood brain barrier and penetration to brain after systemic administration. The various generations of dendrimers have been designed as novel targeted drug delivery tools for new therapies including sustained drug release, gene therapy, and antiangiogenic activities. At present era, various types of dendrimers like PAMAM, PPI, and PLL dendrimers validated them as milestones for the treatment and diagnosis of brain tumor as well as other cancers. This review highlights the recent research, opportunities, advantages, and challenges involved in development of novel dendrimeric complex for the therapy of brain tumor.
  7. Amjad MW, Amin MC, Katas H, Butt AM, Kesharwani P, Iyer AK
    Mol. Pharm., 2015 Dec 7;12(12):4247-58.
    PMID: 26567518 DOI: 10.1021/acs.molpharmaceut.5b00827
    Multidrug resistance poses a great challenge to cancer treatment. In order to improve the targeting and codelivery of small interfering RNA (siRNA) and doxorubicin, and to overcome multidrug resistance, we conjugated a cholic acid-polyethylenimine polymer with folic acid, forming CA-PEI-FA micelles. CA-PEI-FA exhibited a low critical micelle concentration (80 μM), small average particle size (150 nm), and positive zeta potential (+ 12 mV). They showed high entrapment efficiency for doxorubicin (61.2 ± 1.7%, w/w), forming D-CA-PEI-FA, and for siRNA, forming D-CA-PEI-FA-S. X-ray photoelectron spectroscopic analysis revealed the presence of external FA on D-CA-PEI-FA micelles. About 25% doxorubicin was released within 24 h at pH 7.4, while more than 30% release was observed at pH 5. The presence of FA enhanced micelle antitumor activity. The D-CA-PEI-FA and D-CA-PEI-FA-S micelles inhibited tumor growth in vivo. No significant differences between their in vitro cytotoxic activities or their in vivo antitumor effects were observed, indicating that the siRNA coloading did not significantly increase the antitumor activity. Histological analysis revealed that tumor tissues from mice treated with D-CA-PEI-FA or D-CA-PEI-FA-S showed the lowest cancer cell density and the highest levels of apoptosis and necrosis. Similarly, the livers of these mice exhibited the lowest level of dihydropyrimidine dehydrogenase among all treated groups. The lowest serum vascular endothelial growth factor level (VEGF) (24.4 pg/mL) was observed in mice treated with D-CA-PEI-FA-S micelles using siRNA targeting VEGF. These findings indicated that the developed CA-PEI-FA nanoconjugate has the potential to achieve targeted codelivery of drugs and siRNA.
  8. Wickens JM, Alsaab HO, Kesharwani P, Bhise K, Amin MCIM, Tekade RK, et al.
    Drug Discov. Today, 2017 04;22(4):665-680.
    PMID: 28017836 DOI: 10.1016/j.drudis.2016.12.009
    The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy.
  9. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links