Displaying all 4 publications

Abstract:
Sort:
  1. Tapsir Z, Jamaludin FH, Pingguan-Murphy B, Saidin S
    J Biomater Appl, 2018 02;32(7):987-995.
    PMID: 29187035 DOI: 10.1177/0885328217744081
    The utilisation of hydroxyapatite and collagen as bioactive coating materials could enhance cells attachment, proliferation and osseointegration. However, most methods to form crystal hydroxyapatite coating do not allow the incorporation of polymer/organic compound due to production phase of high sintering temperature. In this study, a polydopamine film was used as an intermediate layer to immobilise hydroxyapatite-collagen without the introduction of high sintering temperature. The surface roughness, coating adhesion, bioactivity and osteoblast attachment on the hydroxyapatite-collagen coating were assessed as these properties remains unknown on the polydopamine grafted film. The coating was developed by grafting stainless steel 316L disks with a polydopamine film. Collagen type I fibres were then immobilised on the grafted film, followed by the biomineralisation of hydroxyapatite. The surface roughness and coating adhesion analyses were later performed by using AFM instrument. An Alamar Blue assay was used to determine the cytotoxicity of the coating, while an alkaline phosphatase activity test was conducted to evaluate the osteogenic differentiation of human fetal osteoblasts on the coating. Finally, the morphology of cells attachment on the coating was visualised under FESEM. The highest RMS roughness and coating adhesion were observed on the hydroxyapatite-collagen coating (hydroxyapatite-coll-dopa). The hydroxyapatite-coll-dopa coating was non-toxic to the osteoblast cells with greater cells proliferation, greater level of alkaline phosphate production and more cells attachment. These results indicate that the immobilisation of hydroxyapatite and collagen using an intermediate polydopamine is identical to enhance coating adhesion, osteoblast cells attachment, proliferation and differentiation, and thus could be implemented as a coating material on orthopaedic and dental implants.
  2. Ho SH, Nik Arsyad NMA, Lau PC, Jamaludin FH, Mahadeva S
    JGH Open, 2021 Jul;5(7):729-733.
    PMID: 34263065 DOI: 10.1002/jgh3.12598
    Peroral endoscopic myotomy (POEM) has rapidly gained popularity as an effective treatment modality for achalasia. However, POEM services in the South East Asian region are not widely available due to either a lack of expertise or interest. In this article, we describe how a POEM service can be developed through a combination of networking with regional experts, having prior experience of endoscopic submucosal dissection (ESD), attending animal model workshops, collaborating with upper gastrointestinal surgeons, and working together in a multidisciplinary team. A total of 68 POEM procedures have been performed since 2015, with a 94.1% technical and 93.4% clinical success rate, and a 21.5% minor complication rate. We believe that our model may be useful for other Endoscopy Units in the region, which are performing advanced therapeutic endoscopy, to develop a POEM service too.
  3. Jamaludin FH, Fathil SM, Wong TW, Termizi MS, Hsu SH, Lai HY
    Resusc Plus, 2021 Dec;8:100180.
    PMID: 34806055 DOI: 10.1016/j.resplu.2021.100180
    Introduction: The COVID-19 pandemic has presented a significant challenge for infection prevention and control during airway management in anaesthesia and critical care. The protective barrier enclosure has been described and studied particularly for perioperative anaesthesia use. The potential use of the protective barrier enclosure during cardiopulmonary resuscitation has been poorly explored in the current literature. This work aims to demonstrate the potential of protective barrier enclosure in limiting aerosol dispersion during cardiopulmonary resuscitation delivery.

    Methods: A proof-of-concept simulation study was conducted to evaluate the protective properties of the protective barrier enclosure during cardiopulmonary resuscitation. Aerosol was simulated using a fluorescent dye trapped within the manikin. Three different methods of cardiopulmonary resuscitation delivery with a protective barrier enclosure applied over the manikin's head were conducted. The first method simulated a chest compression only cardiopulmonary resuscitation, the second method also used chest compressions only, with a face mask fitted on the victim, while the third method, the victim was given chest compression and bag-valve-mask ventilation by two rescuers.

    Results: In the first method, release of aerosol from the manikin's mouth was observed during chest compression, while in second method, most of the aerosol was trapped within the face mask, with only minor leaking. However, when bag-valve-mask ventilation was delivered, the aerosol leaked out at high speed around the bag-valve-mask seal. No aerosol condensation was found outside of the protective barrier enclosure in all scenes.

    Conclusion: Protective barrier enclosure may reduce aerosol exposure to the rescuers during out-of-hospital cardiac arrest.

  4. Md Yusop AH, Wan Ali WFF, Jamaludin FH, Szali Januddi F, Sarian MN, Saad N, et al.
    Biotechnol J, 2024 Mar;19(3):e2300464.
    PMID: 38509814 DOI: 10.1002/biot.202300464
    The present study evaluates the corrosion behavior of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron (PXDD140/HA-Fe) and its cell-material interaction aimed for temporary bone scaffold applications. The physicochemical analyses show that the addition of 20 wt.% HA into the PXDD polymers leads to a higher crystallinity and lower surface roughness. The corrosion assessments of the PXDD140/HA-Fe evaluated by electrochemical methods and surface chemistry analysis indicate that HA decelerates Fe corrosion due to a lower hydrolysis rate following lower PXDD content and being more crystalline. The cell viability and cell death mode evaluations of the PXDD140/HA-Fe exhibit favorable biocompatibility as compared to bare Fe and PXDD-Fe scaffolds owing to HA's bioactive properties. Thus, the PXDD140/HA-Fe scaffolds possess the potential to be used as a biodegradable bone implant.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links