Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Wong YM, Juan JC, Gan HM, Austin CM
    Genome Announc, 2014;2(2).
    PMID: 24604639 DOI: 10.1128/genomeA.00077-14
    Clostridium bifermentans strain WYM is an effective biohydrogen producer isolated from landfill leachate sludge. Here, we present the assembly and annotation of its genome, which may provide further insights into the metabolic pathways involved in efficient biohydrogen production.
  2. Wong YM, Juan JC, Gan HM, Austin CM
    Genome Announc, 2014;2(2).
    PMID: 24604637 DOI: 10.1128/genomeA.00064-14
    Clostridium perfringens strain JJC is an effective biohydrogen and biochemical producer that was isolated from landfill leachate sludge. Here, we present the assembly and annotation of its genome, which may provide further insights into the gene interactions involved in efficient biohydrogen production.
  3. Juan JC, Kartika DA, Wu TY, Hin TY
    Bioresour Technol, 2011 Jan;102(2):452-60.
    PMID: 21094045 DOI: 10.1016/j.biortech.2010.09.093
    Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock.
  4. Velmurugan S, Zhi-Xiang L, C-K Yang T, Juan JC
    Chemosphere, 2021 May;271:129788.
    PMID: 33556631 DOI: 10.1016/j.chemosphere.2021.129788
    Tetracycline (TC), a popularly found drug pollutant, can be contaminated in food and aquatic regions and causes a severe impact on human health. In this research, a visible light active p-stannic oxide/n-copper manganate (p-SnO2/n-CuMnO2) heterojunction was synthesized and has been applied for a signal on photoelectrochemical sensing of antibiotic TC. Firstly, the n-SnO2 microrods were synthesized via a simple and efficient homogeneous precipitation method and the p-CuMnO2 nanoparticles were synthesized by a facile ultrasound-assisted hydrothermal method. The SnO2/CuMnO2 microrods p-n heterojunction was prepared through a simple impregnation method and physicochemical properties of the microrods are characterized by using X-ray diffraction (XRD), Raman, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), UV-Vis diffuse reflectance spectroscopy (UVDRS), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Mott-Schottky analyses. The photoelectrochemical sensing performance of SnO2/CuMnO2 microrods was 2.7 times higher than that of as-synthesized pure SnO2 microrods is due to the more visible light absorption ability and p-n heterojunction (synergy). The designed SnO2/CuMnO2/ITO sensor gives photocurrent signals for the detection of TC in the range of 0.01-1000 μM with the detection limit (LOD) of 5.6 nM. The practical applicability of the sensor was monitored in cow milk and the Taipei River water sample.
  5. Punitha T, Phang SM, Juan JC, Beardall J
    Mar Biotechnol (NY), 2018 Jun;20(3):282-303.
    PMID: 29691674 DOI: 10.1007/s10126-018-9820-x
    Vanadium-dependent haloperoxidases (V-HPO), able to catalyze the reaction of halide ions (Cl-, Br-, I-) with hydrogen peroxide, have a great influence on the production of halocarbons, which in turn are involved in atmospheric ozone destruction and global warming. The production of these haloperoxidases in macroalgae is influenced by changes in the surrounding environment. The first reported vanadium bromoperoxidase was discovered 40 years ago in the brown alga Ascophyllum nodosum. Since that discovery, more studies have been conducted on the structure and mechanism of the enzyme, mainly focused on three types of V-HPO, the chloro- and bromoperoxidases and, more recently, the iodoperoxidase. Since aspects of environmental regulation of haloperoxidases are less well known, the present paper will focus on reviewing the factors which influence the production of these enzymes in macroalgae, particularly their interactions with reactive oxygen species (ROS).
  6. Lee KM, Lai CW, Ngai KS, Juan JC
    Water Res, 2016 Jan 01;88:428-448.
    PMID: 26519627 DOI: 10.1016/j.watres.2015.09.045
    Today, a major issue about water pollution is the residual dyes from different sources (e.g., textile industries, paper and pulp industries, dye and dye intermediates industries, pharmaceutical industries, tannery and craft bleaching industries, etc.), and a wide variety of persistent organic pollutants have been introduced into our natural water resources or wastewater treatment systems. In fact, it is highly toxic and hazardous to the living organism; thus, the removal of these organic contaminants prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade those organic contaminants and advanced heterogeneous photocatalysis involving zinc oxide (ZnO) photocatalyst appears to be one of the most promising technology. In recent years, ZnO photocatalyst have attracted much attention due to their extraordinary characteristics. The high efficiency of ZnO photocatalyst in heterogeneous photocatalysis reaction requires a suitable architecture that minimizes electron loss during excitation state and maximizes photon absorption. In order to further improve the immigration of photo-induced charge carriers during excitation state, considerable effort has to be exerted to further improve the heterogeneous photocatalysis under UV/visible/solar illumination. Lately, interesting and unique features of metal doping or binary oxide photocatalyst system have gained much attention and became favourite research matter among various groups of scientists. It was noted that the properties of this metal doping or binary oxide photocatalyst system primarily depend on the nature of the preparation method and the role of optimum dopants content incorporated into the ZnO photocatalyst. Therefore, this paper presents a critical review of recent achievements in the modification of ZnO photocatalyst for organic contaminants degradation.
  7. Chen YW, Lee HV, Juan JC, Phang SM
    Carbohydr Polym, 2016 Oct 20;151:1210-1219.
    PMID: 27474672 DOI: 10.1016/j.carbpol.2016.06.083
    Nanocellulose was successfully isolated from Gelidium elegans red algae marine biomass. The red algae fiber was treated in three stages namely alkalization, bleaching treatment and acid hydrolysis treatment. Morphological analysis was performed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM results revealed that the isolated nanocellulose had the average diameter and length of 21.8±11.1nm and of 547.3±23.7nm, respectively. Fourier transform infrared (FTIR) spectroscopy proved that the non-cellulosic polysaccharides components were progressively removed during the chemically treatment, and the final derived materials composed of cellulose parent molecular structure. X-ray diffraction (XRD) study showed that the crystallinity of yielded product had been improved after each successive treatments subjected to the treated fiber. The prepared nano-dimensional cellulose demonstrated a network-like structure with higher crystallinity (73%) than that of untreated fiber (33%), and possessed of good thermal stability which is suitable for nanocomposite material.
  8. Hay JX, Wu TY, Juan JC, Md Jahim J
    Environ Sci Pollut Res Int, 2017 Apr;24(11):10354-10363.
    PMID: 28281053 DOI: 10.1007/s11356-017-8557-9
    Although a significant amount of brewery wastewater (BW) is generated during beer production, the nutrients in the BW could be reused as a potential bio-resource for biohydrogen production. Therefore, improvements in photofermentative biohydrogen production due to a combination of BW and pulp and paper mill effluent (PPME) as a mixed production medium were investigated comprehensively in this study. The experimental results showed that both the biohydrogen yield and the chemical oxygen demand removal were improved through the combination of BW and PPME. The best biohydrogen yield of 0.69 mol H2/L medium was obtained using the combination of 10 % BW + 90 % PPME (10B90P), while the reuse of the wastewater alone (100 % BW and 100 % PPME) resulted in 42.3 and 44.0 % less biohydrogen yields than the highest yield, respectively. The greatest light efficiency was 1.97 % and was also achieved using the combination of both wastewaters at 10B90P. This study revealed the potential of reusing and combining two different effluents together, in which the combination of BW and PPME improved the nutrients and light penetration into the mixed production medium.
  9. Wong PM, Juan JC, Lai JC, Lim TH
    ACS Omega, 2020 Jun 16;5(23):13719-13728.
    PMID: 32566837 DOI: 10.1021/acsomega.0c00881
    Sub-10 nm indium metal nanoparticles (In NPs) stabilized on conductive carbon were reacted with silver nitrate in dark conditions in water at room temperature in a galvanic replacement manner to produce an indium hydroxide/silver/carbon nanocomposite (In(OH)3/Ag/C). The chosen carbon imparted colloidal stability, high surface area, and water dispersibility suitable for photodegradation of harmful dyes in water. The size and shape of indium hydroxide and silver nanoparticles produced were found to be 6.6 ± 0.9 nm, similar to that of the In NPs that were started with. The nanocomposite was characterized by transmission electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, and thermogravimetric analysis. The galvanic reaction between In NPs and silver nitrate was tracked with UV-vis spectroscopy in a control experiment without a carbon substrate to confirm that the reaction was indeed thermodynamically spontaneous as indicated by the positive electromotive force (EMF) of +1.14 V calculated for In/Ag+ redox couple. The photocatalytic performance of the nanocomposite was evaluated to be approximately 90% under UVC radiation when 10 ppm of methylene blue and 13 wt % of indium hydroxide/silver loading on carbon were used.
  10. Cheah WY, Show PL, Chang JS, Ling TC, Juan JC
    Bioresour Technol, 2015 May;184:190-201.
    PMID: 25497054 DOI: 10.1016/j.biortech.2014.11.026
    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass.
  11. Liew KH, Loh PL, Juan JC, Yarmo MA, Yusop RM
    ScientificWorldJournal, 2014;2014:796196.
    PMID: 25054185 DOI: 10.1155/2014/796196
    Cross-linked resin-captured palladium (XL-QPPd) was readily prepared by simple physical adsorption onto the high loading QuadraPure macroporous resin and a subsequent reduction process. To enhance the mechanical stability, entrapped palladium nanocatalysts were cross-linked with succinyl chloride. Both transmission electron microscopy images and X-ray diffraction analysis revealed that the palladium nanoparticles were well dispersed with diameters ranging in 4-10 nm. The catalyst performed good catalytic activity in microwave-promoted Suzuki cross-coupling reactions in water under aerobic condition with mild condition by using various aryl halides and phenylboronic acid. In addition, the catalyst showed an excellent recyclability without significant loss of catalytic activity.
  12. Lee HV, Juan JC, Binti Abdullah NF, Nizah Mf R, Taufiq-Yap YH
    Chem Cent J, 2014;8:30.
    PMID: 24812574 DOI: 10.1186/1752-153X-8-30
    Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO).
  13. Wong YM, Juan JC, Ting A, Wu TY, Gan HM, Austin CM
    Genome Announc, 2014;2(2).
    PMID: 24604640 DOI: 10.1128/genomeA.00078-14
    Clostridium sp. strain Ade.TY is potentially a new biohydrogen-producing species isolated from landfill leachate sludge. Here we present the assembly and annotation of its genome, which may provide further insights into its gene interactions for efficient biohydrogen production.
  14. Cheah WY, Ling TC, Juan JC, Lee DJ, Chang JS, Show PL
    Bioresour Technol, 2016 Sep;215:346-56.
    PMID: 27090405 DOI: 10.1016/j.biortech.2016.04.019
    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.
  15. Balu S, Chen YL, Juang RC, Yang TC, Juan JC
    Environ Pollut, 2020 Dec;267:115491.
    PMID: 32911336 DOI: 10.1016/j.envpol.2020.115491
    Surface functionalization and shape modifications are the key strategies being utilized to overcome the limitations of semiconductors in advanced oxidation processes (AOP). Herein, the uniform α-Fe2O3 nanocrystals (α-Fe2O3-NCs) were effectively synthesized via a simple solvothermal route. Meanwhile, the sulfonic acid functionalization (SAF) and the impregnation of α-Fe2O3-NCs on g-C3N4 (α-Fe2O3-NCs@CN-SAF) were achieved through complete solvent evaporation technique. The surface functionalization of the sulfonic acid group on g-C3N4 accelerates the faster migration of electrons to the surface owing to robust electronegativity. The incorporation of α-Fe2O3-NCs with CN-SAF significantly enhances the optoelectronic properties, ultrafast spatial charge separation, and rapid charge transportation. The α-Fe2O3-HPs@CN-SAF and α-Fe2O3-NPs@CN-SAF nanocomposites attained 97.41% and 93.64% of Cr (VI) photoreduction in 10 min, respectively. The photocatalytic efficiency of α-Fe2O3-NCs@CN-SAF nanocomposite is 2.4 and 2.1 times higher than that of pure g-C3N4 and α-Fe2O3, respectively. Besides, the XPS, PEC and recycling experiments confirm the excellent photo-induced charge separation via Z-scheme heterostructure and cyclic stability of α-Fe2O3-NCs@CN-SAF nanocomposites.
  16. Phoon BL, Lai CW, Pan GT, Yang TC, Juan JC
    Nanomaterials (Basel), 2021 Aug 11;11(8).
    PMID: 34443873 DOI: 10.3390/nano11082041
    A highly mesoporous graphitic carbon nitride g-C3N4 (GCN) has been produced by a template-free method and effectively photodegrade tetracycline (TC) antibiotic under solar light irradiation. The mesoporous GCN (GCN-500) greatly improves the photoactivity (0.0247 min-1) by 2.13 times, as compared to that of bulk GCN (0.0116 min-1). The efficiently strengthened photoactivity is ascribed to the high porosity (117.05 m2/g), and improves the optical absorption under visible light (Eg = 2.65 eV) and good charge carrier separation efficiency. The synthesized mesoporous GCN shows a uniform pore size (~3 nm) distribution. GCN-500 shows large pore volume (0.210 cm3/g) compared to GCN-B (0.083 cm3/g). Besides, the GCN-500 also exhibits good recyclability and photostability for TC photodegradation. In conclusion, GCN-500 is a recyclable photocatalyst for the removal of TC under visible light irradiation.
  17. Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC
    J Biosci Bioeng, 2019 Feb;127(2):150-159.
    PMID: 30224189 DOI: 10.1016/j.jbiosc.2018.07.012
    Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.
  18. Show PL, Pal P, Leong HY, Juan JC, Ling TC
    Environ Monit Assess, 2019 Mar 18;191(4):227.
    PMID: 30887225 DOI: 10.1007/s10661-019-7380-9
    Landfill application is the most common approach for biowaste treatment via leachate treatment system. When municipal solid waste deposited in the landfills, microbial decomposition breaks down the wastes generating the end products, such as carbon dioxide, methane, volatile organic compounds, and liquid leachate. However, due to the landfill age, the fluctuation in the characteristics of landfill leachate is foreseen in the leachate treatment plant. The focuses of the researchers are keeping leachate from contaminating groundwater besides keeping potent methane emissions from reaching the atmosphere. To address the above issues, scientists are required to adopt green biological methods to keep the environment safe. This review focuses on the assorting of research papers on organic content and nitrogen removal from the leachate via recent effective biological technologies instead of conventional nitrification and denitrification process. The published researches on the characteristics of various Malaysian landfill sites were also discussed. The understanding of the mechanism behind the nitrification and denitrification process will help to select an optimized and effective biological treatment option in treating the leachate waste. Recently, widely studied technologies for the biological treatment process are aerobic methane oxidation coupled to denitrification (AME-D) and partial nitritation-anammox (PN/A) process, and both were discussed in this review article. This paper gives the idea of the modification of the conventional treatment technologies, such as combining the present processes to make the treatment process more effective. With the integration of biological process in the leachate treatment, the effluent discharge could be treated in shortcut and novel pathways, and it can lead to achieving "3Rs" of reduce, reuse, and recycle approach.
  19. Cheng SY, Show PL, Juan JC, Ling TC, Lau BF, Lai SH, et al.
    Environ Res, 2020 09;188:109737.
    PMID: 32554270 DOI: 10.1016/j.envres.2020.109737
    Sustainable wastewater treatment necessitates the application of natural and green material in the approach. Thus, selecting a natural coagulant in leachate treatment is a crucial step in landfill operation to prevent secondary environmental pollution due to residual inorganic coagulant in treated effluent. Current study investigated the application of guar gum in landfill leachate treatment. Central composite design in response surface methodology was used to optimize the performance of Chemical Oxygen Demand (COD) removal. Quadratic model developed indicated the optimum COD removal 22.57% at guar gum dosage of 44.39 mg/L, pH 8.56 (natural pH of leachate) and mixing speed 79.27 rpm. Scanning electron microscopy showed that floc was compact and energy-dispersive-x-ray analysis showed that guar gum was capable to adsorb multiple ions from the leachate. Structural characterization using Fourier Transform Infrared analysis demonstrated that hydrogen bonding between guar and pollutant particles was involved in coagulation and flocculation process. Therefore, guar gum coagulant present potential to be an alternative in leachate treatment where pH requirement is not required during treatment. Simultaneously, adsorption by guar gum offers added pollutant removal advantage.
  20. Yoong WC, Loke CF, Juan JC, Yusoff K, Mohtarrudin N, Tatsuma T, et al.
    Int J Biol Macromol, 2022 Jan 15;201:516-527.
    PMID: 35041888 DOI: 10.1016/j.ijbiomac.2022.01.062
    We report herein the design and synthesis of colloidally-stable S/Ag1.93S nanoparticles, their photothermal conversion properties and in vitro cytotoxicity toward A431 skin cancer cells under the excitation of a minimally-invasive 980 nm near-infrared (NIR) laser. Micron-sized S particles were first synthesized via acidifying Na2S2O3 using biocompatible sodium alginate as a surfactant. In the presence of AgNO3 and under rapid microwave-induced heating, alginate reduced AgNO3 to nascent Ag which reacted with molten S in situ forming S/Ag1.93S nanoparticles. The nanoparticles were characterized using a combination of X-ray diffraction, electron microscopies, elemental analysis, zeta-potential analysis and UV-VIS-NIR spectroscopy. The average particles size was controlled between 40 and 60 nm by fixing the mole ratio of Ag+:S2O32-. When excited by a 980 nm laser, S/Ag1.93S nanoparticles (~40 nm) produced with the least amount of AgNO3 exhibited a respectable photothermal conversion efficiency of circa 62% with the test aqueous solution heated to a hyperthermia-inducing 52 °C in 15 min. At 0.7 W/cm2, the viability of A431 skin cancer cells incubated with 7.0 ± 0.2 μg/mL of S/Ag1.93S nanoparticles reduced to 14 ± 0.6%, while an A431 cell control maintained an 80% cell viability. These results suggested that S/Ag1.93S nanoparticles may have good potential in reducing metastatic skin carcinoma.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links