Displaying all 12 publications

Abstract:
Sort:
  1. Akbar R, Jusoh SA
    F1000Res, 2013;2:64.
    PMID: 24555044 DOI: 10.12688/f1000research.2-64.v2
    Envelope glycoproteins of Hepatitis C Virus (HCV) play an important role in the virus assembly and initial entry into host cells. Conserved charged residues of the E2 transmembrane (TM) domain were shown to be responsible for the heterodimerization with envelope glycoprotein E1. Despite intensive research on both envelope glycoproteins, the structural information is still not fully understood. Recent findings have revealed that the stem (ST) region of E2 also functions in the initial stage of the viral life cycle. We have previously shown the effect of the conserved charged residues on the TM helix monomer of E2. Here, we extended the model of the TM domain by adding the adjacent ST segment. Explicit molecular dynamics simulations were performed for the E2 amphiphilic segment of the ST region connected to the putative TM domain (residues 683-746). Structural conformation and behavior are studied and compared with the nuclear magnetic resonance (NMR)-derived segment of E2 ( 2KQZ.pdb). We observed that the central helix of the ST region (residues 689 - 703) remained stable as a helix in-plane to the lipid bilayer. Furthermore, the TM domain appeared to provide minimal contribution to the structural stability of the amphipathic region. This study also provides insight into the orientation and positional preferences of the ST segment with respect to the membrane lipid-water interface.
  2. Ismail NA, Jusoh SA
    Interdiscip Sci, 2017 Dec;9(4):499-511.
    PMID: 26969331 DOI: 10.1007/s12539-016-0157-8
    Dengue infections are currently estimated to be 390 million cases annually. Yet, there is no vaccine or specific therapy available. Envelope glycoprotein E (E protein) of DENV mediates viral attachment and entry into the host cells. Several flavonoids have been shown to inhibit HIV-1 and hepatitis C virus entry during the virus-host membrane fusion. In this work, molecular docking method was employed to predict the binding of nine flavonoids (baicalin, baicalein, EGCG, fisetin, glabranine, hyperoside, ladanein, quercetin and flavone) to the soluble ectodomain of DENV type 2 (DENV2) E protein. Interestingly, eight flavonoids were found to dock into the same binding pocket located between the domain I and domain II of different subunits of E protein. Consistent docking results were observed not only for the E protein structures of the DENV2-Thai and DENV2-Malaysia (a homology model) but also for the E protein structures of tick-borne encephalitis virus and Japanese encephalitis virus. In addition, molecular dynamics simulations were performed to further evaluate the interaction profile of the docked E protein-flavonoid complexes. Ile4, Gly5, Asp98, Gly100 and Val151 residues of the DENV2-My E protein that aligned to the same residues in the DENV2-Thai E protein form consistent hydrogen bond interactions with baicalein, quercetin and EGCG during the simulations. This study demonstrates flavonoids potentially form interactions with the E protein of DENV2.
  3. Tai HK, Jusoh SA, Siu SWI
    J Cheminform, 2018 Dec 14;10(1):62.
    PMID: 30552524 DOI: 10.1186/s13321-018-0320-9
    BACKGROUND: Protein-ligand docking programs are routinely used in structure-based drug design to find the optimal binding pose of a ligand in the protein's active site. These programs are also used to identify potential drug candidates by ranking large sets of compounds. As more accurate and efficient docking programs are always desirable, constant efforts focus on developing better docking algorithms or improving the scoring function. Recently, chaotic maps have emerged as a promising approach to improve the search behavior of optimization algorithms in terms of search diversity and convergence speed. However, their effectiveness on docking applications has not been explored. Herein, we integrated five popular chaotic maps-logistic, Singer, sinusoidal, tent, and Zaslavskii maps-into PSOVina[Formula: see text], a recent variant of the popular AutoDock Vina program with enhanced global and local search capabilities, and evaluated their performances in ligand pose prediction and virtual screening using four docking benchmark datasets and two virtual screening datasets.

    RESULTS: Pose prediction experiments indicate that chaos-embedded algorithms outperform AutoDock Vina and PSOVina in ligand pose RMSD, success rate, and run time. In virtual screening experiments, Singer map-embedded PSOVina[Formula: see text] achieved a very significant five- to sixfold speedup with comparable screening performances to AutoDock Vina in terms of area under the receiver operating characteristic curve and enrichment factor. Therefore, our results suggest that chaos-embedded PSOVina methods might be a better option than AutoDock Vina for docking and virtual screening tasks. The success of chaotic maps in protein-ligand docking reveals their potential for improving optimization algorithms in other search problems, such as protein structure prediction and folding. The Singer map-embedded PSOVina[Formula: see text] which is named PSOVina-2.0 and all testing datasets are publicly available on https://cbbio.cis.umac.mo/software/psovina .

  4. Akbar R, Jusoh SA, Amaro RE, Helms V
    Chem Biol Drug Des, 2017 May;89(5):762-771.
    PMID: 27995760 DOI: 10.1111/cbdd.12900
    Finding pharmaceutically relevant target conformations from an arbitrary set of protein conformations remains a challenge in structure-based virtual screening (SBVS). The growth in the number of available conformations, either experimentally determined or computationally derived, obscures the situation further. While the inflated conformation space potentially contains viable druggable targets, the increase of conformational complexity, as a consequence, poses a selection problem. To address this challenge, we took advantage of machine learning methods, namely an over-sampling and a binary classification procedure, and present a novel method to select druggable receptor conformations. Specifically, we trained a binary classifier on a set of nuclear receptor conformations, wherein each conformation was labeled with an enrichment measure for a corresponding SBVS. The classifier enabled us to formulate suggestions and identify enriching SBVS targets for six of seven nuclear receptors. Further, the classifier can be extended to other proteins of interest simply by feeding new training data sets to the classifier. Our work, thus, provides a methodology to identify pharmaceutically interesting receptor conformations for nuclear receptors and other drug targets.
  5. Al-Jamal HA, Jusoh SA, Yong AC, Asan JM, Hassan R, Johan MF
    Asian Pac J Cancer Prev, 2014;15(11):4555-61.
    PMID: 24969884
    BACKGROUND: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib.

    MATERIALS AND METHODS: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and IC50 values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting.

    RESULTS: The IC50 for imatinib on K562 was 362 nM compared to 3,952 nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down- regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562.

    CONCLUSIONS: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.

  6. Al-Jamal HA, Mat Jusoh SA, Hassan R, Johan MF
    BMC Cancer, 2015;15:869.
    PMID: 26547689 DOI: 10.1186/s12885-015-1695-x
    Tumor-suppressor genes are inactivated by methylation in several cancers including acute myeloid leukemia (AML). Src homology-2 (SH2)-containing protein-tyrosine phosphatase 1 (SHP-1) is a negative regulator of the JAK/STAT pathway. Transcriptional silencing of SHP-1 plays a critical role in the development and progression of cancers through STAT3 activation. 5-Azacytidine (5-Aza) is a DNA methyltransferase inhibitor that causes DNA demethylation resulting in re-expression of silenced SHP-1. Lestaurtinib (CEP-701) is a multi-targeted tyrosine kinase inhibitor that potently inhibits FLT3 tyrosine kinase and induces hematological remission in AML patients harboring the internal tandem duplication of the FLT3 gene (FLT3-ITD). However, the majority of patients in clinical trials developed resistance to CEP-701. Therefore, the aim of this study, was to assess the effect of re-expression of SHP-1 on sensitivity to CEP-701 in resistant AML cells.
  7. Swift RV, Jusoh SA, Offutt TL, Li ES, Amaro RE
    J Chem Inf Model, 2016 05 23;56(5):830-42.
    PMID: 27097522 DOI: 10.1021/acs.jcim.5b00684
    Ensemble docking can be a successful virtual screening technique that addresses the innate conformational heterogeneity of macromolecular drug targets. Yet, lacking a method to identify a subset of conformational states that effectively segregates active and inactive small molecules, ensemble docking may result in the recommendation of a large number of false positives. Here, three knowledge-based methods that construct structural ensembles for virtual screening are presented. Each method selects ensembles by optimizing an objective function calculated using the receiver operating characteristic (ROC) curve: either the area under the ROC curve (AUC) or a ROC enrichment factor (EF). As the number of receptor conformations, N, becomes large, the methods differ in their asymptotic scaling. Given a set of small molecules with known activities and a collection of target conformations, the most resource intense method is guaranteed to find the optimal ensemble but scales as O(2(N)). A recursive approximation to the optimal solution scales as O(N(2)), and a more severe approximation leads to a faster method that scales linearly, O(N). The techniques are generally applicable to any system, and we demonstrate their effectiveness on the androgen nuclear hormone receptor (AR), cyclin-dependent kinase 2 (CDK2), and the peroxisome proliferator-activated receptor δ (PPAR-δ) drug targets. Conformations that consisted of a crystal structure and molecular dynamics simulation cluster centroids were used to form AR and CDK2 ensembles. Multiple available crystal structures were used to form PPAR-δ ensembles. For each target, we show that the three methods perform similarly to one another on both the training and test sets.
  8. Zamani A, Mat Jusoh SA, Al-Jamal HA, Sul'ain MD, Johan MF
    Asian Pac J Cancer Prev, 2016 11 01;17(11):4857-4861.
    PMID: 28030911
    Background: Imatinib mesylate, a tyrosine kinase inhibitor specifically targeting the BCR/ABL fusion protein, induces hematological remission in patients with chronic myeloid leukemia (CML). However, the majority of CML patients treated with imatinib develop resistance with prolonged therapy. Dendrophthoe pentandra (L.) Miq. is a Malaysian mistletoe species that has been used as a traditional treatment for several ailments such as smallpox, ulcers, and cancers. Methods: We developed a resistant cell line (designated as K562R) by long-term co-culture of a BCR/ ABL positive CML cell line, K562, with imatinib mesylate. We then investigated the anti-proliferative effects of D. pentandra methanol extract on parental K562 and resistant K562R cells. Trypan blue exclusion assays were performed to determine the IC50 concentration; apoptosis and cell cycle analysis were conducted by flow cytometry. Results: D. pentandra extract had greater anti-proliferative effects towards K562R (IC50= 192 μg/mL) compared to K562 (500 μg/ mL) cells. Upon treatment with D. pentandra extract at the IC50. concentration: K562 but not K562R demonstrated increase in apoptosis and cell cycle arrest in the G2/M phase. Conclusion: D. pentandra methanol extract exerts potent anti-proliferative effect on BCR/ABL positive K562 cells.
  9. Al-Jamal HAN, Johan MF, Mat Jusoh SA, Ismail I, Wan Taib WR
    Asian Pac J Cancer Prev, 2018 Jun 25;19(6):1585-1590.
    PMID: 29936783
    Background: Epigenetic silencing of tumor suppressor genes (TSG) is involved in development and
    progression of cancers. Re-expression of TSG is inversely proportionate with STAT3 signaling pathways.
    Demethylation of DNA by 5-Azacytidine (5-Aza) results in re-expression of silenced TSG. Forced expression of
    PRG2 by 5-Aza induced apoptosis in cancer cells. Imatinib is a tyrosine kinase inhibitor that potently inhibits BCR/
    ABL tyrosine kinase resulting in hematological remission in CML patients. However, majority of CML patients treated
    with imatinib would develop resistance under prolonged therapy. Methods: CML cells resistant to imatinib were
    treated with 5-Aza and cytotoxicity of imatinib and apoptosis were determined by MTS and annexin-V, respectively.
    Gene expression analysis was detected by real time-PCR, STATs activity examined using Western blot and methylation
    status of PRG2 was determined by pyrosequencing analysis. Result: Expression of PRG2 was significantly higher in
    K562-R+5-Aza cells compared to K562 and K562-R (p=0.001). Methylation of PRG2 gene was significantly decreased
    in K562-R+5-Aza cells compared to other cells (p=0.021). STAT3 was inactivated in K562-R+5-Aza cells which showed
    higher sensitivity to imatinib. Conclusion: PRG2 gene is a TSG and its overexpression might induce sensitivity to
    imatinib. However, further studies are required to evaluate the negative regulations of PRG2 on STAT3 signaling.
  10. Ali EZ, Zakaria Y, Mohd Radzi MA, Ngu LH, Jusoh SA
    Biomed Res Int, 2018;2018:4320831.
    PMID: 30175132 DOI: 10.1155/2018/4320831
    Ornithine transcarbamylase deficiency (OTCD), an X-linked disorder that results from mutations in the OTC gene, causes hyperammonemia and leads to various clinical manifestations. Mutations occurring close to the catalytic site of OTCase can cause severe OTCD phenotypes compared with those caused by mutations occurring on the surface of this protein. In this study, we report two novel OTC missense mutations, Q171H and N199H, found in Malaysian patients. Q171H and N199H caused neonatal onset OTCD in a male and late OTCD in a female, respectively. In silico predictions and molecular docking were performed to examine the effect of these novel mutations, and the results were compared with other 30 known OTC mutations. In silico servers predicted that Q171H and N199H, as well as 30 known missense mutations, led to the development of OTCD. Docking analysis indicated that N-(phosphonoacetyl)-L-ornithine (PALO) was bound to the catalytic site of OTCase mutant structure with minimal conformational changes. However, the mutations disrupted interatomic interactions in the catalytic site. Therefore, depending on the severity of disruption occurring at the catalytic site, the mutation may affect the efficiency of mechanism and functions of OTCase.
  11. Cao H, Ng MCK, Jusoh SA, Tai HK, Siu SWI
    J Comput Aided Mol Des, 2017 Sep;31(9):855-865.
    PMID: 28864946 DOI: 10.1007/s10822-017-0047-0
    [Formula: see text]-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM . Website is implemented in PHP, MySQL and Apache, with all major browsers supported.
  12. Razman AZ, Chua YA, Mohd Kasim NA, Al-Khateeb A, Sheikh Abdul Kadir SH, Jusoh SA, et al.
    Int J Mol Sci, 2022 Nov 29;23(23).
    PMID: 36499307 DOI: 10.3390/ijms232314971
    Familial hypercholesterolaemia (FH) is caused by mutations in lipid metabolism genes, predominantly in low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin-type 9 (PCSK9) and LDL receptor adaptor protein 1 (LDLRAP1). The prevalence of genetically confirmed FH and the detection rate of pathogenic variants (PV) amongst clinically diagnosed patients is not well established. Targeted next-generation sequencing of LDLR, APOB, PCSK9 and LDLRAP1 was performed on 372 clinically diagnosed Malaysian FH subjects. Out of 361 variants identified, 40 of them were PV (18 = LDLR, 15 = APOB, 5 = PCSK9 and 2 = LDLRAP1). The majority of the PV were LDLR and APOB, where the frequency of both PV were almost similar. About 39% of clinically diagnosed FH have PV in PCSK9 alone and two novel variants of PCSK9 were identified in this study, which have not been described in Malaysia and globally. The prevalence of genetically confirmed potential FH in the community was 1:427, with a detection rate of PV at 0.2% (12/5130). About one-fourth of clinically diagnosed FH in the Malaysian community can be genetically confirmed. The detection rate of genetic confirmation is similar between potential and possible FH groups, suggesting a need for genetic confirmation in index cases from both groups. Clinical and genetic confirmation of FH index cases in the community may enhance the early detection of affected family members through family cascade screening.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links