Displaying all 7 publications

Abstract:
Sort:
  1. Kardia E, Yusoff NM, Zakaria Z, Yahaya B
    J Aerosol Med Pulm Drug Deliv, 2014 Feb;27(1):30-4.
    PMID: 23409833 DOI: 10.1089/jamp.2012.1020
    Cell-based therapy has great potential to treat patients with lung diseases. The administration of cells into an injured lung is one method of repairing and replacing lost lung tissue. However, different types of delivery have been studied and compared, and none of the techniques resulted in engraftment of a high number of cells into the targeted organ. In this in vitro study, a novel method of cell delivery was introduced to investigate the possibility of delivering aerosolized skin-derived fibroblasts.
  2. Kardia E, Ch'ng ES, Yahaya BH
    J Tissue Eng Regen Med, 2018 02;12(2):e995-e1007.
    PMID: 28105760 DOI: 10.1002/term.2421
    Aerosol-based cell therapy has emerged as a novel and promising therapeutic strategy for treating lung diseases. The goal of this study was to determine the safety and efficacy of aerosol-based airway epithelial cell (AEC) delivery in the setting of acute lung injury induced by tracheal brushing in rabbit. Twenty-four hours following injury, exogenous rabbit AECs were labelled with bromodeoxyuridine and aerosolized using the MicroSprayer® Aerosolizer into the injured airway. Histopathological assessments of the injury in the trachea and lungs were quantitatively scored (1 and 5 days after cell delivery). The aerosol-based AEC delivery appeared to be a safe procedure, as cellular rejection and complications in the liver and spleen were not detected. Airway injury initiated by tracheal brushing resulted in disruption of the tracheal epithelium as well as morphological damage in the lungs that is consistent with acute lung injury. Lung injury scores were reduced following 5 days after AEC delivery (AEC-treated, 0.25  ±  0.06 vs. untreated, 0.53  ±  0.05, P  
  3. Kardia E, Mohamed R, Yahaya BH
    Sci Rep, 2017 09 15;7(1):11732.
    PMID: 28916766 DOI: 10.1038/s41598-017-11992-6
    Airway stem/progenitor epithelial cells (AECs) are notable for their differentiation capacities in response to lung injury. Our previous finding highlighted the regenerative capacity of AECs following transplantation in repairing tracheal injury and reducing the severity of alveolar damage associated acute lung injury in a rabbit model. The goal of this study is to further investigate the potential of AECs to re-populate the tracheal epithelium and to study their stimulatory effect on inhibiting pro-inflammatory cytokines, epithelial cell migration and proliferation, and epithelial-to-mesenchymal transition (EMT) process following tracheal injury. Two in vitro culture assays were applied in this study; the direct co-culture assay that involved a culture of decellularised tracheal epithelium explants and AECs in a rotating tube, and indirect co-culture assay that utilized microporous membrane-well chamber system to separate the partially decellularised tracheal epithelium explants and AEC culture. The co-culture assays provided evidence of the stimulatory behaviour of AECs to enhance tracheal epithelial cell proliferation and migration during early wound repair. Factors that were secreted by AECs also markedly suppressed the production of IL-1β and IL-6 and initiated the EMT process during tracheal remodelling.
  4. Kardia E, Halim NSSA, Yahaya BH
    Methods Mol Biol, 2016;1516:243-255.
    PMID: 27062596 DOI: 10.1007/7651_2016_327
    Aerosol-based cell delivery technique via intratracheal is an effective route for delivering transplant cells directly into the lungs. An aerosol device known as the MicroSprayer(®) Aerosolizer is invented to transform liquid into an aerosol form, which then can be applied via intratracheal administration for drug delivery. The device produces a uniform and concentrated distribution of aerosolized liquid. Using the capability of MicroSprayer(®) Aerosolizer to transform liquid into aerosol form, our group has designed a novel method of cell delivery using an aerosol-based technique. We have successfully delivered skin-derived fibroblast cells and airway epithelial cells into the airway of a rabbit with minimum risk of cell loss and have uniformly distributed the cells into the airway. This chapter illustrates the application of aerosol device to deliver any type of cells for future treatment of lung diseases.
  5. Kamaruzaman NA, Kardia E, Kamaldin N', Latahir AZ, Yahaya BH
    Biomed Res Int, 2013;2013:691830.
    PMID: 23653896 DOI: 10.1155/2013/691830
    No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy.
  6. Kardia E, Zakaria N, Sarmiza Abdul Halim NS, Widera D, Yahaya BH
    Regen Med, 2017 03;12(2):203-216.
    PMID: 28244823 DOI: 10.2217/rme-2016-0112
    The therapeutic use of mesenchymal stromal cells (MSCs) represents a promising alternative clinical strategy for treating acute and chronic lung disorders. Several preclinical reports demonstrated that MSCs can secrete multiple paracrine factors and that their immunomodulatory properties can support endothelial and epithelial regeneration, modulate the inflammatory cascade and protect lungs from damage. The effects of MSC transplantation into patients suffering from lung diseases should be fully evaluated through careful assessment of safety and associated risks, which is a prerequisite for translation of preclinical research into clinical practice. In this article, we summarize the current status of preclinical research and review initial MSC-based clinical trials for treating lung injuries and lung disorders.
  7. Halim NSS, Ch'ng ES, Kardia E, Ali SA, Radzi R, Yahaya BH
    Stem Cell Rev Rep, 2019 02;15(1):112-125.
    PMID: 30178289 DOI: 10.1007/s12015-018-9844-7
    BACKGROUND: The aim of this study was to investigate the effects of MSCs and MSC-expressing ANGPT1 (MSC-pANGPT1) treatment via aerosolisation in alleviating the asthma-related airway inflammation in the rabbit model.

    METHODS: Rabbits were sensitised and challenged with both intraperitoneal injection and inhalation of ovalbumin (Ova). MSCs and MSC-pANGPT1 cells were aerosolised into rabbit lungs using the MicroSprayer® Aerosolizer Model IA-1B 48 h after injury. The post mortem was performed 3 days following cell delivery. Histopathological assessments of the lung tissues and inflammatory response were quantitatively scored following treatments.

    RESULT(S): Administration of aerosolised MSCs and MSC-pANGPT1 were significantly reduced inflammation of the airways (p 

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links