METHODS: We used data collected from 21 adult and 17 pediatric sites (across 13 and 6 countries/territories, respectively) in the International Epidemiology Databases to Evaluate AIDS - Asia-Pacific cohort. ART failure was defined as viral, immune, or clinical consistent with WHO guidelines.
RESULTS: A total of 8567 adults and 6149 children contributed data. Frequency of CD4 count monitoring declined between 2010 and 2019 among adult sites (from 1.93 to 1.06 tests/person per year, a 45.1% decline) and pediatric sites (from 2.16 to 0.86 testsperson per year, a 60.2% decline), whereas rates of viral load monitoring remained relatively stable. The proportion of adult and pediatric treatment failure detected as immune failure declined (from 73.4% to 50.0% and from 45.8% to 23.1%, respectively), whereas the proportion of failure detected as viral failure increased (from 7.8% to 25.0% and from 45.8% to 76.9%, respectively). The proportion of ART failure detected as clinical failure remained stable among adult and pediatric sites. The largest shifts in ART monitoring and failure type occurred in lower middle-income countries.
CONCLUSIONS: Although viral failure in our Asian cohort now comprises a larger portion of ART failure than in prior years, the diagnostic characteristics of immune and clinical failure, and recommendations on their management, remain important inclusions for regional ART guidelines.
METHODS: CLHIV aged <18 years, who were on first-line cART for ≥12 months, and had virological suppression (two consecutive plasma viral load [pVL] <50 copies/mL) were included. Those who started treatment with mono/dual antiretroviral therapy, had a history of treatment interruption >14 days, or received treatment and care at sites with a pVL lower limit of detection >50 copies/mL were excluded. LLV was defined as a pVL 50 to 1000 copies/mL, and VF as a single pVL >1000 copies/mL. Baseline was the time of the second pVL
METHODS: We used Cox regression to analyze data of a cohort of Asian children.
RESULTS: A total of 2608 children were included; median age at cART was 5.7 years. Time-updated weight for age z score < -3 was associated with mortality (P < 0.001) independent of CD4% and < -2 was associated with immunological failure (P ≤ 0.03) independent of age at cART.
CONCLUSIONS: Weight monitoring provides useful data to inform clinical management of children on cART in resource-limited settings.
METHODS: Data from perinatally HIV-infected, antiretroviral-naïve patients initiated on NNRTI-based ART aged 10-19 years who had ≥6 months of follow-up were analyzed. Competing risk regression was used to assess predictors of NNRTI substitution and clinical failure (World Health Organization Stage 3/4 event or death). Viral suppression was defined as a viral load <400 copies/mL.
RESULTS: Data from 534 adolescents met our inclusion criteria (56.2% female; median age at treatment initiation 11.8 years). After 5 years of treatment, median height-for-age z score increased from -2.3 to -1.6, and median CD4+ cell count increased from 131 to 580 cells/mm(3). The proportion of patients with viral suppression after 6 months was 87.6% and remained >80% up to 5 years of follow-up. NNRTI substitution and clinical failure occurred at rates of 4.9 and 1.4 events per 100 patient-years, respectively. Not using cotrimoxazole prophylaxis at ART initiation was associated with NNRTI substitution (hazard ratio [HR], 1.5 vs. using; 95% confidence interval [CI] = 1.0-2.2; p = .05). Baseline CD4+ count ≤200 cells/mm(3) (HR, 3.3 vs. >200; 95% CI = 1.2-8.9; p = .02) and not using cotrimoxazole prophylaxis at ART initiation (HR, 2.1 vs. using; 95% CI = 1.0-4.6; p = .05) were both associated with clinical failure.
CONCLUSIONS: Despite late ART initiation, adolescents achieved good rates of catch-up growth, CD4+ count recovery, and virological suppression. Earlier ART initiation and routine cotrimoxazole prophylaxis in this population may help to reduce current rates of NNRTI substitution and clinical failure.
DESIGN: Death-related data were retrospectively and prospectively assessed in a longitudinal regional cohort study.
METHODS: Children under routine HIV care at sites in Cambodia, India, Indonesia, Malaysia, Thailand, and Vietnam between 2008 and 2017 were followed. Causes of death were reported and then independently and centrally reviewed. Predictors were compared using competing risks survival regression analyses.
RESULTS: Among 5918 children, 5523 (93%; 52% male) had ever been on combination antiretroviral therapy. Of 371 (6.3%) deaths, 312 (84%) occurred in those with a history of combination antiretroviral therapy (crude all-cause mortality 9.6 per 1000 person-years; total follow-up time 32 361 person-years). In this group, median age at death was 7.0 (2.9-13) years; median CD4 cell count was 73 (16-325) cells/μl. The most common underlying causes of death were pneumonia due to unspecified pathogens (17%), tuberculosis (16%), sepsis (8.0%), and AIDS (6.7%); 12% of causes were unknown. These clinical diagnoses were further grouped into AIDS-related infections (22%) and noninfections (5.8%), and non-AIDS-related infections (47%) and noninfections (11%); with 12% unknown, 2.2% not reviewed. Higher CD4 cell count and better weight-for-age z-score were protective against death.
CONCLUSION: Our standardized cause of death assessment provides robust data to inform regional resource allocation for pediatric diagnostic evaluations and prioritization of clinical interventions, and highlight the continued importance of opportunistic and nonopportunistic infections as causes of death in our cohort.
METHODS: Children enrolled in the TREAT Asia Pediatric HIV Observational Database who had SM (weight-for-height or body mass index-for-age Z score less than -3) at ART initiation were analyzed. Generalized estimating equations were used to investigate poor weight recovery (weight-for-age Z score less than -3) and poor CD4% recovery (CD4% <25), and competing risk regression was used to analyze mortality and toxicity-associated treatment modification.
RESULTS: Three hundred fifty-five (11.9%) of 2993 children starting ART had SM. Their median weight-for-age Z score increased from -5.6 at ART initiation to -2.3 after 36 months. Not using trimethoprim-sulfamethoxazole prophylaxis at baseline was associated with poor weight recovery [odds ratio: 2.49 vs. using; 95% confidence interval (CI): 1.66-3.74; P < 0.001]. Median CD4% increased from 3.0 at ART initiation to 27.2 after 36 months, and 56 (15.3%) children died during follow-up. More profound SM was associated with poor CD4% recovery (odds ratio: 1.78 for Z score less than -4.5 vs. -3.5 to less than -3.0; 95% CI: 1.08-2.92; P = 0.023) and mortality (hazard ratio: 2.57 for Z score less than -4.5 vs. -3.5 to less than -3.0; 95% CI: 1.24-5.33; P = 0.011). Twenty-two toxicity-associated ART modifications occurred at a rate of 2.4 per 100 patient-years, and rates did not differ by malnutrition severity.
CONCLUSION: Trimethoprim-sulfamethoxazole prophylaxis is important for the recovery of weight-for-age in severely malnourished children starting ART. The extent of SM does not impede weight-for-age recovery or antiretroviral tolerability, but CD4% response is compromised in children with a very low weight-for-height/body mass index-for-age Z score, which may contribute to their high rate of mortality.
METHODS: Data collected 2001 to 2016 from PHIVA 10-19 years of age within a regional Asian cohort were analyzed using competing risk time-to-event and Poisson regression analyses to describe the nature and incidence of morbidity events and hospitalizations and identify factors associated with disease-related, treatment-related and overall morbidity. Morbidity was defined according to World Health Organization clinical staging criteria and U.S. National Institutes of Health Division of AIDS criteria.
RESULTS: A total 3,448 PHIVA contributed 17,778 person-years. Median age at HIV diagnosis was 5.5 years, and ART initiation was 6.9 years. There were 2,562 morbidity events and 307 hospitalizations. Cumulative incidence for any morbidity was 51.7%, and hospitalization was 10.0%. Early adolescence was dominated by disease-related infectious morbidity, with a trend toward noninfectious and treatment-related morbidity in later adolescence. Higher overall morbidity rates were associated with a CD4 count <350 cells/µL, HIV viral load ≥10,000 copies/mL and experiencing prior morbidity at age <10 years. Lower overall morbidity rates were found for those 15-19 years of age compared with 10-14 years and those who initiated ART at age 5-9 years compared with <5 or ≥10 years.
CONCLUSIONS: Half of our PHIVA cohort experienced a morbidity event, with a trend from disease-related infectious events to treatment-related and noninfectious events as PHIVA age. ART initiation to prevent immune system damage, optimize virologic control and minimize childhood morbidity are key to limiting adolescent morbidity.
METHODS: Perinatally HIV-infected Asian adolescents (10-19 years) with documented virologic suppression (two consecutive viral loads [VLs] <400 copies/mL ≥6 months apart) were included. Baseline was the date of the first VL <400 copies/mL at age ≥10 years or the 10th birthday for those with prior suppression. Cox proportional hazards models were used to identify predictors of postsuppression VR (VL >1,000 copies/mL).
RESULTS: Of 1,379 eligible adolescents, 47% were males. At baseline, 22% were receiving protease inhibitor-containing regimens; median CD4 cell count (interquartile range [IQR]) was 685 (448-937) cells/mm3; 2% had preadolescent virologic failure (VF) before subsequent suppression. During adolescence, 180 individuals (13%) experienced postsuppression VR at a rate of 3.4 (95% confidence interval: 2.9-3.9) per 100 person-years, which was consistent over time. Median time to VR during adolescence (IQR) was 3.3 (2.1-4.8) years. Wasting (weight-for-age z-score
METHODS: Data (2014-2018) from a regional cohort of Asian PHIVA who received at least 6 months of continuous cART were analyzed. Treatment failure was defined according to World Health Organization criteria. Descriptive analyses were used to report treatment failure and subsequent management and evaluate postfailure CD4 count and viral load trends. Kaplan-Meier survival analyses were used to compare the cumulative incidence of death and loss to follow-up (LTFU) by treatment failure status.
RESULTS: A total 3196 PHIVA were included in the analysis with a median follow-up period of 3.0 years, of whom 230 (7.2%) had experienced 292 treatment failure events (161 virologic, 128 immunologic, 11 clinical) at a rate of 3.78 per 100 person-years. Of the 292 treatment failure events, 31 (10.6%) had a subsequent cART switch within 6 months, which resulted in better immunologic and virologic outcomes compared to those who did not switch cART. The 5-year cumulative incidence of death and LTFU following treatment failure was 18.5% compared to 10.1% without treatment failure.
CONCLUSIONS: Improved implementation of virologic monitoring is required to realize the benefits of virologic determination of cART failure. There is a need to address issues related to accessibility to subsequent cART regimens, poor adherence limiting scope to switch regimens, and the role of antiretroviral resistance testing.
OBJECTIVES: To study the initial ART regimens and the rate of switch of ART regimens used during the first 36 months in HIV-infected children with severe anemia and to evaluate their clinical and laboratory outcomes.
METHODS: We analyzed regional cohort data of 130 Asian children aged <18 years with baseline severe anemia (hemoglobin <7.5 g/dl) who started antiretroviral therapy (ART) between January 2003 and September 2013.
RESULTS: At ART initiation, median age was 3.5 years old (interquartile range (IQR) 1.7 to 6.3) and median hemoglobin was 6.7 g/dL (IQR 5.9-7.1, range 3.0-7.4). Initial ART regimens included stavudine (85.4%), zidovudine (13.8%), and abacavir (0.8%). In 81 children with available hemoglobin data after 6 months of ART, 90% recovered from severe anemia with a median hemoglobin of 10.7 g/dL (IQR 9.6-11.7, range 4.4-13.5). Those starting AZT-based ART had a mortality rate of 10.8 (95% confidence interval (CI) 4.8-23.9) per 100 patient-years compared to 2.7 (95% CI 1.6-4.6) per 100 patient-years among those who started d4T-based ART.
CONCLUSIONS: With the phase-out of stavudine, age-appropriate non-zidovudine options are needed for younger Asian children with severe anemia.
METHODS: A multisite cross-sectional study was conducted in HIV-infected patients currently <25 years old receiving antiretroviral treatment (ART) who had HBV surface antigen (HBsAg), or HBV surface antibody (anti-HBs) or HBV core antibody (anti-HBc) tested during 2012-2013. HBV coinfection was defined as having either a positive HBsAg test or being anti-HBc positive and anti-HBs negative, reflective of past HBV infection. HBV seroprotection was defined as having a positive anti-HBs test.
RESULTS: A total of 3380 patients from 6 countries (Vietnam, Thailand, Cambodia, Malaysia, Indonesia and India) were included. The current median (interquartile range) age was 11.2 (7.8-15.1) years. Of the 2755 patients (81.5%) with HBsAg testing, 130 (4.7%) were positive. Of 1558 (46%) with anti-HBc testing, 77 (4.9%) were positive. Thirteen of 1037 patients with all 3 tests were anti-HBc positive and HBsAg and anti-HBs negative. One child was positive for anti-HBc and negative for anti-HBs but did not have HBsAg tested. The prevalence of HBV coinfection was 144/2759 (5.2%) (95% confidence interval: 4.4-6.1). Of 1093 patients (32%) with anti-HBs testing, 257 (23.5%; confidence interval: 21.0-26.0) had positive tests representing HBV seroprotection.
CONCLUSIONS: The estimated prevalence of HBV coinfection in this cohort of Asian HIV-infected children and adolescents on ART was 5.2%. The majority of children and adolescents tested in this cohort (76.5%) did not have protective HBV antibody. The finding supports HBV screening of HIV-infected children and adolescents to guide revaccination, the use of ART with anti-HBV activity and future monitoring.
SETTING: An Asian cohort in 16 pediatric HIV services across 6 countries.
METHODS: From 2005 to 2014, patients younger than 20 years who achieved virologic suppression and had subsequent viral load testing were included. Early virologic failure was defined as a HIV RNA ≥1000 copies per milliliter within 12 months of virologic suppression, and late virologic as a HIV RNA ≥1000 copies per milliliter after 12 months following virologic suppression. Characteristics at combination antiretroviral therapy initiation and virologic suppression were described, and a competing risk time-to-event analysis was used to determine cumulative incidence of virologic failure and factors at virologic suppression associated with early and late virologic failure.
RESULTS: Of 1105 included in the analysis, 182 (17.9%) experienced virologic failure. The median age at virologic suppression was 6.9 years, and the median time to virologic failure was 24.6 months after virologic suppression. The incidence rate for a first virologic failure event was 3.3 per 100 person-years. Factors at virologic suppression associated with late virologic failure included older age, mostly rural clinic setting, tuberculosis, protease inhibitor-based regimens, and early virologic failure. No risk factors were identified for early virologic failure.
CONCLUSIONS: Around 1 in 5 experienced virologic failure in our cohort after achieving virologic suppression. Targeted interventions to manage complex treatment scenarios, including adolescents, tuberculosis coinfection, and those with poor virologic control are required.
METHODS: Individuals enrolled in the Therapeutics Research, Education, and AIDS Training in Asia Pediatric HIV Observational Database were included if they started ART at ages 1 month-14 years and had both height and weight measurements available at ART initiation (baseline). Generalized estimating equations were used to identify factors associated with change in height-for-age z-score (HAZ), follow-up HAZ ≥ -2, change in weight-for-age z-score (WAZ), and follow-up WAZ ≥ -2.
RESULTS: A total of 3217 children were eligible for analysis. The adjusted mean change in HAZ among cotrimoxazole and non-cotrimoxazole users did not differ significantly over the first 24 months of ART. In children who were stunted (HAZ < -2) at baseline, cotrimoxazole use was not associated with a follow-up HAZ ≥ -2. The adjusted mean change in WAZ among children with a baseline CD4 percentage (CD4%) >25% became significantly different between cotrimoxazole and non-cotrimoxazole users after 6 months of ART and remained significant after 24 months (overall P < .01). Similar changes in WAZ were observed in those with a baseline CD4% between 10% and 24% (overall P < .01). Cotrimoxazole use was not associated with a significant difference in follow-up WAZ in children with a baseline CD4% <10%. In those underweight (WAZ < -2) at baseline, cotrimoxazole use was associated with a follow-up WAZ ≥ -2 (adjusted odds ratio, 1.70 vs not using cotrimoxazole [95% confidence interval, 1.28-2.25], P < .01). This association was driven by children with a baseline CD4% ≥10%.
CONCLUSIONS: Cotrimoxazole use is associated with benefits to WAZ but not HAZ during early ART in Asian children.
SETTING: Asian regional cohort incorporating 16 pediatric HIV services across 6 countries.
METHODS: Data from PHIVA (aged 10-19 years) who received combination antiretroviral therapy 2007-2016 were used to analyze LTFU through (1) an International epidemiology Databases to Evaluate AIDS (IeDEA) method that determined LTFU as >90 days late for an estimated next scheduled appointment without returning to care and (2) the absence of patient-level data for >365 days before the last data transfer from clinic sites. Descriptive analyses and competing-risk survival and regression analyses were used to evaluate LTFU epidemiology and associated factors when analyzed using each method.
RESULTS: Of 3509 included PHIVA, 275 (7.8%) met IeDEA and 149 (4.3%) met 365-day absence LTFU criteria. Cumulative incidence of LTFU was 19.9% and 11.8% using IeDEA and 365-day absence criteria, respectively. Risk factors for LTFU across both criteria included the following: age at combination antiretroviral therapy initiation <5 years compared with age ≥5 years, rural clinic settings compared with urban clinic settings, and high viral loads compared with undetectable viral loads. Age 10-14 years compared with age 15-19 years was another risk factor identified using 365-day absence criteria but not IeDEA LTFU criteria.
CONCLUSIONS: Between 12% and 20% of PHIVA were determined LTFU with treatment fatigue and rural treatment settings consistent risk factors. Better tracking of adolescents is required to provide a definitive understanding of LTFU and optimize evidence-based models of care.