Displaying all 11 publications

  1. Sidek KA, Khalil I
    PMID: 22255160 DOI: 10.1109/IEMBS.2011.6090644
    This paper presents a person identification mechanism in irregular cardiac conditions using ECG signals. A total of 30 subjects were used in the study from three different public ECG databases containing various abnormal heart conditions from the Paroxysmal Atrial Fibrillation Predicition Challenge database (AFPDB), MIT-BIH Supraventricular Arrthymia database (SVDB) and T-Wave Alternans Challenge database (TWADB). Cross correlation (CC) was used as the biometric matching algorithm with defined threshold values to evaluate the performance. In order to measure the efficiency of this simple yet effective matching algorithm, two biometric performance metrics were used which are false acceptance rate (FAR) and false reject rate (FRR). Our experimentation results suggest that ECG based biometric identification with irregular cardiac condition gives a higher recognition rate of different ECG signals when tested for three different abnormal cardiac databases yielding false acceptance rate (FAR) of 2%, 3% and 2% and false reject rate (FRR) of 1%, 2% and 0% for AFPDB, SVDB and TWADB respectively. These results also indicate the existence of salient biometric characteristics in the ECG morphology within the QRS complex that tends to differentiate individuals.
  2. Mohd Ishak NA, Khalil I, Abdullah FZ, Muhd Julkapli N
    Carbohydr Polym, 2020 Oct 15;246:116553.
    PMID: 32747237 DOI: 10.1016/j.carbpol.2020.116553
    Catalytic ionic liquid hydrolysis of cellulosic material have been considered as a green and highly efficient dissolution process. However, application of a pre-treatment process, i.e; ultrasonication enhances the hydrolysis of cellulose in ionic liquid by providing mechanical force. In this paper, we describe the impact of both chemical and mechanical approaches to produce nanocrytalline cellulose (NCC) with anticipated particle size, and crystallinity with improved yields. The ultrasonication treatment was evaluated in terms of treatment time and vibration amplitude. It was found that the lowest ultrasonication time (5 min) produced the NCC of highest crystallinity (73 %), but the lowest yield (84 %). In contrary, the highest ultrasonication vibration amplitude at 90 % produced NCC with highest crystallinity value (67 %) as well as yields (90 %). It concludes that ultrasonic pre-treatment improves the hydrolysis process of cellulose in ionic liquid with increasing yield and crystallinity of NCC.
  3. Islam A, Khalil I, Islam N, Moniruzzaman M, Mottalib A, Sulaiman SA, et al.
    PMID: 23043497 DOI: 10.1186/1472-6882-12-177
    There is no available information on physicochemical and antioxidant properties on Bangladeshi honey. We investigated five different monofloral and three different multifloral honey samples collected from different parts of Bangladesh.
  4. Khalil I, Moniruzzaman M, Boukraâ L, Benhanifia M, Islam A, Islam N, et al.
    Molecules, 2012 Sep 20;17(9):11199-215.
    PMID: 22996344
    The aim of the present study was to characterize the physical, biochemical and antioxidant properties of Algerian honey samples (n = 4). Physical parameters, such as pH, moisture content, electrical conductivity (EC), total dissolved solids (TDS), color intensity, total sugar and sucrose content were measured. Several biochemical and antioxidant tests were performed to determine the antioxidant properties of the honey samples. The mean pH was 3.84 ± 0.01, and moisture the content was 13.21 ± 0.16%. The mean EC was 0.636 ± 0.001, and the mean TDS was 316.92 ± 0.92. The mean color was 120.58 ± 0.64 mm Pfund, and the mean 5-hydroxymethylfurfural (HMF) content was 21.49 mg/kg. The mean total sugar and reducing sugar contents were 67.03 ± 0.68 g/mL and 64.72 ± 0.52 g/g, respectively. The mean sucrose content was 2.29 ± 0.65%. High mean values of phenolic (459.83 ± 1.92 mg gallic acid/kg), flavonoid (54.23 ± 0.62 mg catechin/kg), ascorbic acid (159.70 ± 0.78 mg/kg), AEAC (278.15 ± 4.34 mg/kg), protein (3381.83 ± 6.19 mg/kg) and proline (2131.47 ± 0.90) contents, as well as DPPH (39.57% ± 4.18) and FRAP activities [337.77 ± 1.01 µM Fe (II)/100 g], were also detected, indicating that Algerian honey has a high antioxidant potential. Strong positive correlations were found between flavonoid, proline and ascorbic acid contents and color intensity with DPPH and FRAP values. Thus, the present study revealed that Algerian honey is a good source of antioxidants.
  5. Khalil I, Julkapli NM, Yehye WA, Basirun WJ, Bhargava SK
    Materials (Basel), 2016 May 24;9(6).
    PMID: 28773528 DOI: 10.3390/ma9060406
    Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene-AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene-Au nanocomposites. The paper highlights the graphene-gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.
  6. Khalil I, Yehye WA, Muhd Julkapli N, Sina AA, Rahmati S, Basirun WJ, et al.
    Analyst, 2020 Feb 17;145(4):1414-1426.
    PMID: 31845928 DOI: 10.1039/c9an02106j
    Surface enhanced Raman scattering (SERS) DNA biosensing is an ultrasensitive, selective, and rapid detection technique with the ability to produce molecule-specific distinct fingerprint spectra. It supersedes the long amplicon based PCR assays, the fluorescence and spectroscopic techniques with their quenching and narrow spectral bandwidth, and the electrochemical detection techniques using multiplexing. However, the performance of the SERS DNA biosensor relies on the DNA probe length, platform composition, both the presence and position of Raman tags and the chosen sensing strategy. In this context, we herein report a SERS biosensor based on dual nanoplatforms with a uniquely designed Raman tag (ATTO Rho6G) intercalated short-length DNA probe for the sensitive detection of the pig species Sus scrofa. In the design of the signal probe (SP), a Raman tag was incorporated adjacent to the spacer arm, followed by a terminal thiol modifier, which consequently had a strong influence on the SERS signal enhancement. The detection strategy involves the probe-target DNA hybridization mediated coupling of the two platforms, i.e., the graphene oxide-gold nanorod (GO-AuNR) functionalized capture probe (CP) and SP-conjugated gold nanoparticles (AuNPs), consequently enhancing the SERS intensity by both the electromagnetic hot spots generated at the junctions or interstices of the two platforms and the chemical enhancement between the AuNPs and the adsorbed intercalated Raman tag. This dual platform based SERS DNA biosensor exhibited outstanding sensitivity in detecting pork DNA with a limit of detection (LOD) of 100 aM validated with DNA extracted from a pork sample (LOD 1 fM). Moreover, the fabricated SERS biosensor showed outstanding selectivity and specificity for differentiating the DNA sequences of six closely related non-target species from the target DNA sequences with single and three nucleotide base-mismatches. Therefore, the developed short-length DNA linked dual platform based SERS biosensor could replace the less sensitive traditional methods of pork DNA detection and be adopted as a universal detection approach for the qualitative and quantitative detection of DNA from any source.
  7. Khalil I, Yehye WA, Julkapli NM, Rahmati S, Sina AA, Basirun WJ, et al.
    Biosens Bioelectron, 2019 Apr 15;131:214-223.
    PMID: 30844598 DOI: 10.1016/j.bios.2019.02.028
    Surface-enhanced Raman scattering (SERS) based DNA biosensors have considered as excellent, fast and ultrasensitive sensing technique which relies on the fingerprinting ability to produce molecule specific distinct spectra. Unlike conventional fluorescence based strategies SERS provides narrow spectral bandwidths, fluorescence quenching and multiplexing ability, and fitting attribute with short length probe DNA sequences. Herein, we report a novel and PCR free SERS based DNA detection strategy involving dual platforms and short DNA probes for the detection of endangered species, Malayan box turtle (MBT) (Cuora amboinensis). In this biosensing feature, the detection is based on the covalent linking of the two platforms involving graphene oxide-gold nanoparticles (GO-AuNPs) functionalized with capture probe 1 and gold nanoparticles (AuNPs) modified with capture probe 2 and Raman dye (Cy3) via hybridization with the corresponding target sequences. Coupling of the two platforms generates locally enhanced electromagnetic field 'hot spot', formed at the junctions and interstitial crevices of the nanostructures and consequently provide significant amplification of the SERS signal. Therefore, employing the two SERS active substrates and short-length probe DNA sequences, we have managed to improve the sensitivity of the biosensors to achieve a lowest limit of detection (LOD) as low as 10 fM. Furthermore, the fabricated biosensor exhibited sensitivity even for single nucleotide base-mismatch in the target DNA as well as showed excellent performance to discriminate closely related six non-target DNA sequences. Although the developed SERS biosensor would be an attractive platform for the authentication of MBT from diverse samples including forensic and/or archaeological specimens, it could have universal application for detecting gene specific biomarkers for many diseases including cancer.
  8. Chen LH, Shen HT, Chang WH, Khalil I, Liao SY, A Yehye W, et al.
    Nanomaterials (Basel), 2020 Oct 07;10(10).
    PMID: 33036455 DOI: 10.3390/nano10101985
    Graphene (Gr)/gold (Au) and graphene-oxide (GO)/Au nanocomposites (NCPs) were synthesized by performing pulsed-laser-induced photolysis (PLIP) on hydrogen peroxide and chloroauric acid (HAuCl4) that coexisted with Gr or GO in an aqueous solution. A 3-month-long aqueous solution stability was observed in the NCPs synthesized without using surfactants and additional processing. The synthesized NCPs were characterized using absorption spectroscopy, transmission electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray diffraction to prove the existence of hybrid Gr/Au or GO/Au NCPs. The synthesized NCPs were further evaluated using the photocatalytic reaction of methylene blue (MB), a synthetic dye, under UV radiation, visible light (central wavelength of 470 nm), and full spectrum of solar light. Both Gr/Au and GO/Au NCPs exhibited photocatalytic degradation of MB under solar light illumination with removal efficiencies of 92.1% and 94.5%, respectively.
  9. Charara R, Forouzanfar M, Naghavi M, Moradi-Lakeh M, Afshin A, Vos T, et al.
    PLoS One, 2017;12(1):e0169575.
    PMID: 28095477 DOI: 10.1371/journal.pone.0169575
    The Eastern Mediterranean Region (EMR) is witnessing an increase in chronic disorders, including mental illness. With ongoing unrest, this is expected to rise. This is the first study to quantify the burden of mental disorders in the EMR. We used data from the Global Burden of Disease study (GBD) 2013. DALYs (disability-adjusted life years) allow assessment of both premature mortality (years of life lost-YLLs) and nonfatal outcomes (years lived with disability-YLDs). DALYs are computed by adding YLLs and YLDs for each age-sex-country group. In 2013, mental disorders contributed to 5.6% of the total disease burden in the EMR (1894 DALYS/100,000 population): 2519 DALYS/100,000 (2590/100,000 males, 2426/100,000 females) in high-income countries, 1884 DALYS/100,000 (1618/100,000 males, 2157/100,000 females) in middle-income countries, 1607 DALYS/100,000 (1500/100,000 males, 1717/100,000 females) in low-income countries. Females had a greater proportion of burden due to mental disorders than did males of equivalent ages, except for those under 15 years of age. The highest proportion of DALYs occurred in the 25-49 age group, with a peak in the 35-39 years age group (5344 DALYs/100,000). The burden of mental disorders in EMR increased from 1726 DALYs/100,000 in 1990 to 1912 DALYs/100,000 in 2013 (10.8% increase). Within the mental disorders group in EMR, depressive disorders accounted for most DALYs, followed by anxiety disorders. Among EMR countries, Palestine had the largest burden of mental disorders. Nearly all EMR countries had a higher mental disorder burden compared to the global level. Our findings call for EMR ministries of health to increase provision of mental health services and to address the stigma of mental illness. Moreover, our results showing the accelerating burden of mental health are alarming as the region is seeing an increased level of instability. Indeed, mental health problems, if not properly addressed, will lead to an increased burden of diseases in the region.
  10. Khalil I, Colombara DV, Forouzanfar MH, Troeger C, Daoud F, Moradi-Lakeh M, et al.
    Am J Trop Med Hyg, 2016 Dec 07;95(6):1319-1329.
    PMID: 27928080 DOI: 10.4269/ajtmh.16-0339
    Diarrheal diseases (DD) are leading causes of disease burden, death, and disability, especially in children in low-income settings. DD can also impact a child's potential livelihood through stunted physical growth, cognitive impairment, and other sequelae. As part of the Global Burden of Disease Study, we estimated DD burden, and the burden attributable to specific risk factors and particular etiologies, in the Eastern Mediterranean Region (EMR) between 1990 and 2013. For both sexes and all ages, we calculated disability-adjusted life years (DALYs), which are the sum of years of life lost and years lived with disability. We estimate that over 125,000 deaths (3.6% of total deaths) were due to DD in the EMR in 2013, with a greater burden of DD in low- and middle-income countries. Diarrhea deaths per 100,000 children under 5 years of age ranged from one (95% uncertainty interval [UI] = 0-1) in Bahrain and Oman to 471 (95% UI = 245-763) in Somalia. The pattern for diarrhea DALYs among those under 5 years of age closely followed that for diarrheal deaths. DALYs per 100,000 ranged from 739 (95% UI = 520-989) in Syria to 40,869 (95% UI = 21,540-65,823) in Somalia. Our results highlighted a highly inequitable burden of DD in EMR, mainly driven by the lack of access to proper resources such as water and sanitation. Our findings will guide preventive and treatment interventions which are based on evidence and which follow the ultimate goal of reducing the DD burden.
  11. Global Burden of Disease Child and Adolescent Health Collaboration, Kassebaum N, Kyu HH, Zoeckler L, Olsen HE, Thomas K, et al.
    JAMA Pediatr, 2017 06 01;171(6):573-592.
    PMID: 28384795 DOI: 10.1001/jamapediatrics.2017.0250
    Importance: Comprehensive and timely monitoring of disease burden in all age groups, including children and adolescents, is essential for improving population health.

    Objective: To quantify and describe levels and trends of mortality and nonfatal health outcomes among children and adolescents from 1990 to 2015 to provide a framework for policy discussion.

    Evidence Review: Cause-specific mortality and nonfatal health outcomes were analyzed for 195 countries and territories by age group, sex, and year from 1990 to 2015 using standardized approaches for data processing and statistical modeling, with subsequent analysis of the findings to describe levels and trends across geography and time among children and adolescents 19 years or younger. A composite indicator of income, education, and fertility was developed (Socio-demographic Index [SDI]) for each geographic unit and year, which evaluates the historical association between SDI and health loss.

    Findings: Global child and adolescent mortality decreased from 14.18 million (95% uncertainty interval [UI], 14.09 million to 14.28 million) deaths in 1990 to 7.26 million (95% UI, 7.14 million to 7.39 million) deaths in 2015, but progress has been unevenly distributed. Countries with a lower SDI had a larger proportion of mortality burden (75%) in 2015 than was the case in 1990 (61%). Most deaths in 2015 occurred in South Asia and sub-Saharan Africa. Global trends were driven by reductions in mortality owing to infectious, nutritional, and neonatal disorders, which in the aggregate led to a relative increase in the importance of noncommunicable diseases and injuries in explaining global disease burden. The absolute burden of disability in children and adolescents increased 4.3% (95% UI, 3.1%-5.6%) from 1990 to 2015, with much of the increase owing to population growth and improved survival for children and adolescents to older ages. Other than infectious conditions, many top causes of disability are associated with long-term sequelae of conditions present at birth (eg, neonatal disorders, congenital birth defects, and hemoglobinopathies) and complications of a variety of infections and nutritional deficiencies. Anemia, developmental intellectual disability, hearing loss, epilepsy, and vision loss are important contributors to childhood disability that can arise from multiple causes. Maternal and reproductive health remains a key cause of disease burden in adolescent females, especially in lower-SDI countries. In low-SDI countries, mortality is the primary driver of health loss for children and adolescents, whereas disability predominates in higher-SDI locations; the specific pattern of epidemiological transition varies across diseases and injuries.

    Conclusions and Relevance: Consistent international attention and investment have led to sustained improvements in causes of health loss among children and adolescents in many countries, although progress has been uneven. The persistence of infectious diseases in some countries, coupled with ongoing epidemiologic transition to injuries and noncommunicable diseases, require all countries to carefully evaluate and implement appropriate strategies to maximize the health of their children and adolescents and for the international community to carefully consider which elements of child and adolescent health should be monitored.

Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links