Displaying all 11 publications

Abstract:
Sort:
  1. Junaid OQ, Wong KT, Khaw LT, Mahmud R, Vythilingam I
    Trop Biomed, 2018 Dec 01;35(4):981-998.
    PMID: 33601846
    Co-infection with multiple different parasites is a common phenomenon in both human and animals. Among parasites that frequently co-infect the same hosts, are the filarial worms and malaria parasites. Despite this, the mechanisms underlying the interactions between these parasites is still relatively unexplored with very few studies available on the resulting pathologies due to co-infection by filarial nematodes and malaria parasites. Hence, this study investigated the histopathological effect of Brugia pahangi and Plasmodium berghei ANKA (PbA) infections in gerbil host. Gerbils grouped into B. pahangi-infected, PbA-infected, B. pahangi and PbA-coinfected, and uninfected control, were necropsied at different time points of post PbA infections. Brugia pahangi infections in the gerbils were first initiated by subcutaneous inoculation of 50 infective larvae, while PbA infections were done by intraperitoneal injection of 106 parasitized red blood cells after 70 days patent period of B. pahangi. Organs such as the lungs, kidneys, spleen, heart and liver were harvested aseptically at the point of necropsy. There was significant hepatosplenomegaly observed in both PbA-infected only and coinfected gerbils. The spleen, liver and lungs were heavily pigmented. Both B. pahangi and PbA infections (mono and coinfections) resulted in pulmonary edema, while glomerulonephritis was associated with PbA infections. The presence of both parasites induced extramedullary hematopoiesis in the spleen and liver. These findings suggest that the pathologies associated with coinfected gerbils were synergistically induced by both B. pahangi and PbA infections.
  2. Junaid OQ, Vythilingam I, Khaw LT, Sivanandam S, Mahmud R
    Parasitol Res, 2020 Apr;119(4):1301-1315.
    PMID: 32179986 DOI: 10.1007/s00436-020-06632-4
    Malaria and lymphatic filariasis (LF) are two leading and common mosquito-borne parasitic diseases worldwide. These two diseases are co-endemic in many tropical and sub-tropical regions and are known to share vectors. The interactions between malaria and filarial parasites are poorly understood. Thus, this study aimed at establishing the interactions that occur between Brugia pahangi and Plasmodium berghei ANKA (PbA) co-infection in gerbils. Briefly, the gerbils were matched according to age, sex, and weight and grouped into filarial-only infection, PbA-only infection, co-infection, and control group. The parasitemia, survival and clinical assessment of the gerbils were monitored for a period of 30 days post Plasmodium infection. The immune responses of gerbils to both mono and co-infection were monitored. Findings show that co-infected gerbils have higher survival rate than PbA-infected gerbils. Food and water consumption were significantly reduced in both PbA-infected and co-infected gerbils, although loss of body weight, hypothermia, and anemia were less severe in co-infected gerbils. Plasmodium-infected gerbils also suffered hypoglycemia, which was not observed in co-infected gerbils. Furthermore, gerbil cytokine responses to co-infection were significantly higher than PbA-only-infected gerbils, which is being suggested as a factor for their increased longevity. Co-infected gerbils had significantly elicited interleukin-4, interferon-gamma, and tumor necrotic factor at early stage of infection than PbA-infected gerbils. Findings from this study suggest that B. pahangi infection protect against severe anemia and hypoglycemia, which are manifestations of PbA infection.
  3. Khaw LT, Ball HJ, Mitchell AJ, Grau GE, Stocker R, Golenser J, et al.
    Exp Parasitol, 2014 Oct;145:34-41.
    PMID: 25045850 DOI: 10.1016/j.exppara.2014.07.002
    We here describe the novel finding that brain endothelial cells in vitro can stimulate the growth of Plasmodium falciparum through the production of low molecular weight growth factors. By using a conditioned medium approach, we show that the brain endothelial cells continued to release these factors over time. If this mirrors the in vivo situation, these growth factors potentially would provide an advantage, in terms of enhanced growth, for sequestered parasitised red blood cells in the brain microvasculature. We observed this phenomenon with brain endothelial cells from several sources as well as a second P. falciparum strain. The characteristics of the growth factors included: <3 kDa molecular weight, heat stable, and in part chloroform soluble. Future efforts should be directed at identifying these growth factors, since blocking their production or actions might be of benefit for reducing parasite load and, hence, malaria pathology.
  4. Vythilingam I, Sam JI, Chan YF, Khaw LT, Sulaiman WY
    Front Microbiol, 2016;7:1452.
    PMID: 27679623 DOI: 10.3389/fmicb.2016.01452
    Zika virus (ZIKV) has now become a global public health concern. The vectors for ZIKV are Aedes aegypti and A. albopictus. Both these mosquitoes are predominant in Southeast Asia and are also responsible for the spread of other arboviral diseases like dengue virus and chikungunya virus. The incidence of dengue has been increasing over the years and this is of concern to public health workers. Simple laboratory tools for the detection of ZIKV is also lacking. In the absence of drugs and vaccine for these arboviral diseases, vector control is the main option for surveillance and control. Aedes larval surveys have been the hallmark of dengue control along with larviciding and fogging when cases are reported. However, we need new paradigms and options for control of these vectors. The current situation in Southeast Asia clearly proves that effective strategies for vector control need to be proactive and not reactive. This will be the way forward to control epidemics of these diseases inclusive of ZIKV until a vaccine becomes available.
  5. Akter R, Vythilingam I, Khaw LT, Qvist R, Lim YA, Sitam FT, et al.
    Malar J, 2015 Oct 05;14:386.
    PMID: 26437652 DOI: 10.1186/s12936-015-0856-3
    BACKGROUND: Malaria is a vector-borne parasitic disease which is prevalent in many developing countries. Recently, it has been found that Plasmodium knowlesi, a simian malaria parasite can be life-threatening to humans. Long-tailed macaques, which are widely distributed in Malaysia, are the natural hosts for simian malaria, including P. knowlesi. The aim of the present study was to determine the prevalence of simian malaria parasites in long-tailed macaques in the district of Hulu Selangor, Selangor, Malaysia.

    METHODS: A total of 70 blood samples were collected from Macaca fascicularis dwelling in the forest of Hulu Selangor by the Department of Wildlife and National Parks Peninsular Malaysia, Kuala Lumpur, Malaysia. DNA was extracted using PureLink™ Genomic DNA Kits. Conventional and nested PCR were used to detect the genus and species of Plasmodium parasites respectively. In addition, phylogenetic analysis was carried out to confirm the species of Plasmodium parasites.

    RESULTS: Thirty-five (50 %) of the 70 samples were positive for Plasmodium using genus-specific primers. These positive samples were then subjected to nested PCR targeting the 18S ribosomal RNA genes to detect all five simian malaria parasites: namely, P. knowlesi, Plasmodium inui, Plasmodium cynomolgi, Plasmodium fieldi, and Plasmodium coatneyi. All five species of simian malaria parasites were detected. Of these, P. inui was the predominant (65.7 %), followed by P. knowlesi (60 %), P. cynomolgi (51.4 %) P. coatneyi (45.7 %) and P. fieldi (2.9 %). A total of nine macaques had mono-infection with P. knowlesi (four), P. cynomolgi (two), P. coatneyi (two) and P. fieldi (one). Eleven of the macaques had dual infections while 12 had triple infections. Three macaques were infected with four species of Plasmodium. Molecular and phylogenetic analysis confirmed the five species of Plasmodium parasites.

    CONCLUSION: This study has provided evidence to elucidate the presence of transmission of malaria parasites among the local macaques in Hulu Selangor. Since malaria is a zoonosis, it is important to determine the new control strategies for the control of malaria.

  6. Lai JW, Maah MJ, Tan KW, Sarip R, Lim YAL, Ganguly R, et al.
    Malar J, 2022 Dec 17;21(1):386.
    PMID: 36528584 DOI: 10.1186/s12936-022-04406-0
    BACKGROUND: Malaria remains one of the most virulent and deadliest parasitic disease in the world, particularly in Africa and Southeast Asia. Widespread occurrence of artemisinin-resistant Plasmodium falciparum strains from the Greater Mekong Subregion is alarming. This hinders the national economies, as well as being a major drawback in the effective control and elimination of malaria worldwide. Clearly, an effective anti-malarial drug is urgently needed.

    METHODS: The dinuclear and mononuclear copper(II) and zinc(II) complexes were synthesized in ethanolic solution and characterized by various physical measurements (FTIR, CHN elemental analysis, solubility, ESI-MS, UV-Visible, conductivity and magnetic moment, and NMR). X-ray crystal structure of the dicopper(II) complex was determined. The in vitro haemolytic activities of these metal complexes were evaluated spectroscopically on B+ blood while the anti-malarial potency was performed in vitro on blood stage drug-sensitive Plasmodium falciparum 3D7 (Pf3D7) and artemisinin-resistant Plasmodium falciparum IPC5202 (Pf5202) with fluorescence dye. Mode of action of metal complexes were conducted to determine the formation of reactive oxygen species using PNDA and DCFH-DA dyes, JC-1 depolarization of mitochondrial membrane potential, malarial 20S proteasome inhibition with parasite lysate, and morphological studies using Giemsa and Hoechst stains.

    RESULTS: Copper(II) complexes showed anti-malarial potency against both Pf3D7 and Pf5202 in sub-micromolar to micromolar range. The zinc(II) complexes were effective against Pf3D7 with excellent therapeutic index but encountered total resistance against Pf5202. Among the four, the dinuclear copper(II) complex was the most potent against both strains. The zinc(II) complexes caused no haemolysis of RBC while copper(II) complexes induced increased haemolysis with increasing concentration. Further mechanistic studies of both copper(II) complexes on both Pf3D7 and Pf5202 strains showed induction of ROS, 20S malarial proteasome inhibition, loss of mitochondrial membrane potential and morphological features indicative of apoptosis.

    CONCLUSION: The dinuclear [Cu(phen)-4,4'-bipy-Cu(phen)](NO3)4 is highly potent and can overcome the total drug-resistance of Pf5202 towards chloroquine and artemisinin. The other three copper(II) and zinc(II) complexes were only effective towards the drug-sensitive Pf3D7, with the latter causing no haemolysis of RBC. Their mode of action involves multiple targets.

  7. Wong ML, Chua TH, Leong CS, Khaw LT, Fornace K, Wan-Sulaiman WY, et al.
    PLoS Negl Trop Dis, 2015;9(10):e0004135.
    PMID: 26448052 DOI: 10.1371/journal.pntd.0004135
    BACKGROUND: The simian malaria parasite Plasmodium knowlesi is emerging as a public health problem in Southeast Asia, particularly in Malaysian Borneo where it now accounts for the greatest burden of malaria cases and deaths. Control is hindered by limited understanding of the ecology of potential vector species.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted a one year longitudinal study of P. knowlesi vectors in three sites within an endemic area of Sabah, Malaysia. All mosquitoes were captured using human landing catch. Anopheles mosquitoes were dissected to determine, oocyst, sporozoites and parous rate. Anopheles balabacensis is confirmed as the primary vector of. P. knowlesi (using nested PCR) in Sabah for the first time. Vector densities were significantly higher and more seasonally variable in the village than forest or small scale farming site. However An. balabacensis survival and P. knowlesi infection rates were highest in forest and small scale farm sites. Anopheles balabacensis mostly bites humans outdoors in the early evening between 1800 to 2000 hrs.

    CONCLUSIONS/SIGNIFICANCE: This study indicates transmission is unlikely to be prevented by bednets. This combined with its high vectorial capacity poses a threat to malaria elimination programmes within the region.

  8. Lim KL, Johari NA, Wong ST, Khaw LT, Tan BK, Chan KK, et al.
    PLoS One, 2020;15(8):e0238417.
    PMID: 32857823 DOI: 10.1371/journal.pone.0238417
    The rapid global spread of the coronavirus disease (COVID-19) has inflicted significant health and socioeconomic burden on affected countries. As positive cases continued to rise in Malaysia, public health laboratories experienced an overwhelming demand for COVID-19 screening. The confirmation of positive cases of COVID-19 has solely been based on the detection of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) using real-time reverse transcription polymerase chain reaction (qRT-PCR). In efforts to increase the cost-effectiveness and efficiency of COVID-19 screening, we evaluated the feasibility of pooling clinical Nasopharyngeal/Oropharyngeal (NP/OP) swab specimens during nucleic acid extraction without a reduction in sensitivity of qRT-PCR. Pools of 10 specimens were extracted and subsequently tested by qRT-PCR according to the WHO-Charité protocol. We demonstrated that the sample pooling method showed no loss of sensitivity. The effectiveness of the pooled testing strategy was evaluated on both retrospective and prospective samples, and the results showed a similar detection sensitivity compared to testing individual sample alone. This study demonstrates the feasibility of using a pooled testing strategy to increase testing capacity and conserve resources, especially when there is a high demand for disease testing.
  9. Voon K, Johari NA, Lim KL, Wong ST, Khaw LT, Wong SF, et al.
    Bio Protoc, 2021 May 05;11(9):e4005.
    PMID: 34124305 DOI: 10.21769/BioProtoc.4005
    The COVID-19 pandemic requires mass screening to identify those infected for isolation and quarantine. Individually screening large populations for the novel pathogen, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is costly and requires a lot of resources. Sample pooling methods improve the efficiency of mass screening and consume less reagents by increasing the capacity of testing and reducing the number of experiments performed, and are therefore especially suitable for under-developed countries with limited resources. Here, we propose a simple, reliable pooling strategy for COVID-19 testing using clinical nasopharyngeal (NP) and/or oropharyngeal (OP) swabs. The strategy includes the pooling of 10 NP/OP swabs for extraction and subsequent testing via quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), and may also be applied to the screening of other pathogens.
  10. Yap NJ, Hossain H, Nada-Raja T, Ngui R, Muslim A, Hoh BP, et al.
    Emerg Infect Dis, 2021 08;27(8):2187-2191.
    PMID: 34287122 DOI: 10.3201/eid2708.204502
    We detected the simian malaria parasites Plasmodium knowlesi, P. cynomolgi, P. inui, P. coatneyi, P. inui-like, and P. simiovale among forest fringe-living indigenous communities from various locations in Malaysia. Our findings underscore the importance of using molecular tools to identify newly emergent malaria parasites in humans.
  11. Junaid QO, Khaw LT, Mahmud R, Ong KC, Lau YL, Borade PU, et al.
    Parasite, 2017;24:38.
    PMID: 29034874 DOI: 10.1051/parasite/2017040
    BACKGROUND: As the quest to eradicate malaria continues, there remains a need to gain further understanding of the disease, particularly with regard to pathogenesis. This is facilitated, apart from in vitro and clinical studies, mainly via in vivo mouse model studies. However, there are few studies that have used gerbils (Meriones unguiculatus) as animal models. Thus, this study is aimed at characterizing the effects of Plasmodium berghei ANKA (PbA) infection in gerbils, as well as the underlying pathogenesis.

    METHODS: Gerbils, 5-7 weeks old were infected by PbA via intraperitoneal injection of 1 × 106 (0.2 mL) infected red blood cells. Parasitemia, weight gain/loss, hemoglobin concentration, red blood cell count and body temperature changes in both control and infected groups were monitored over a duration of 13 days. RNA was extracted from the brain, spleen and whole blood to assess the immune response to PbA infection. Organs including the brain, spleen, heart, liver, kidneys and lungs were removed aseptically for histopathology.

    RESULTS: Gerbils were susceptible to PbA infection, showing significant decreases in the hemoglobin concentration, RBC counts, body weights and body temperature, over the course of the infection. There were no neurological signs observed. Both pro-inflammatory (IFNγ and TNF) and anti-inflammatory (IL-10) cytokines were significantly elevated. Splenomegaly and hepatomegaly were also observed. PbA parasitized RBCs were observed in the organs, using routine light microscopy and in situ hybridization.

    CONCLUSION: Gerbils may serve as a good model for severe malaria to further understand its pathogenesis.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links