Displaying all 3 publications

  1. Yahya N, Akhtar MN, Koziol K
    J Nanosci Nanotechnol, 2012 Oct;12(10):8116-22.
    PMID: 23421187
    Magnetic nanoparticles in the hollow region of carbon nanotubes have attraction due to their changing physical electrical and magnetic properties. Nickel zinc ferrite plays an important role in many applications due to its superior magnetic properties. Ni0.8Zn0.2Fe2O4 single crystals were encapsulated in multiwall carbon nanotubes (MWCNTs). The magnetic nano crystals were prepared using a sol-gel self combustion method at the sintering temperature of 750 degrees C and were characterized by XRD, FESEM, TEM and VSM. Initial permeability, Q-factor and relative loss factor were measured by impedance vector network analyzer. XRD patterns were used for the phase identification. FESEM images show morphology and dimensions of the grains of Ni0.8Zn0.2Fe2O4 single crystals and Ni0.8Zn0.2Fe2O4 single crystals in MWCNTs. TEM images were used to investigate single crystal and encapsulation of Ni0.8Zn0.2Fe2O4 single crystals in the MWCNTs. VSM results confirmed super paramagnetic behaviour of encapsulated Ni0.8Zn0.2Fe2O4 single crystals. It was also attributed that encapsulated Ni0.8Zn0.2Fe2O4 single crystals in MWCNTs showed a higher initial permeability (51.608), Q-factor (67.069), and low loss factor (0.0002) as compared to Ni0.8Zn0.2Fe2O4 single crystals. The new encapsulated Ni0.8Zn0.2Fe2O4 single crystals in the MWCNTs may have potential applications in electronic and medical industries.
  2. Yahya N, Akhtar MN, Nasir N, Shafie A, Jabeli MS, Koziol K
    J Nanosci Nanotechnol, 2012 Oct;12(10):8100-9.
    PMID: 23421185
    In seabed logging the magnitude of electromagnetic (EM) waves for the detection of a hydrocarbon reservoir in the marine environment is very important. Having a strong EM source for exploration target 4000 m below the sea floor is a very challenging task. A new carbon nanotubes (CNT) fibres/aluminium based EM transmitter is developed and NiZn ferrite as magnetic feeders was used in a scaled tank to evaluate the presence of oil. Resistive scaled tank experiments with a scale factor of 2000 were carried out. X-ray Diffraction (XRD), Raman Spectroscopy and Field Emission Scanning Electron Microscope (FESEM) were done to characterize the synthesized magnetic feeders. Single phase Ni0.76Mg0.04Zn0.2Fe2O4, obtained by the sol-gel method and sintered at 700 degrees C in air, has a [311] major peak. FESEM results show nanoparticles with average diameters of 17-45 nm. Samples which have a high Q-factor (approximately 50) was used as magnetic feeders for the EM transmitter. The magnitude of the EM waves of this new EM transmitter increases up to 400%. A curve fitting method using MATLAB software was done to evaluate the performance of the new EM transmitter. The correlation value with CNT fibres/aluminium-NiZnFe2O4 base transmitter shows a 152.5% increase of the magnetic field strength in the presence of oil. Modelling of the scale tank which replicates the marine environment was done using the Finite Element Method (FEM). In conclusion, FEM was able to delineate the presence of oil with greater magnitude of E-field (16.89%) and the B field (4.20%) due to the new EM transmitter.
  3. Yahya N, Al Habashi RM, Koziol K, Borkowski RD, Akhtar MN, Kashif M, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2652-6.
    PMID: 21449447
    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links