Displaying all 8 publications

Abstract:
Sort:
  1. Yazid FB, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S
    Clin Oral Investig, 2014 Dec;18(9):2103-12.
    PMID: 24549764 DOI: 10.1007/s00784-014-1207-4
    The aim of this study was to investigate the immunodulatory properties of dental pulp stem cells derived from healthy (SCD) and inflamed pulp deciduous (SCDIP) tissues. The overall hypothesis is that SCDIP possess equal immune properties with SCD and could be used as an alternative tissue source in regenerative medicine.
  2. Razali Z, Somasundram C, Nurulain SZ, Kunasekaran W, Alias MR
    Polymers (Basel), 2021 Aug 30;13(17).
    PMID: 34502959 DOI: 10.3390/polym13172919
    Cherry tomatoes are climacteric fruits that have a limited shelf life. Over the years, many methods have been applied to preserve the fruit quality and safety of these fruits. In this study, a novel method of combining mucilage from dragon fruits and UV-C irradiation was carried out. Cherry tomatoes were subjected to UV-C irradiation and edible coating, both as a stand-alone and hurdle treatment. The edible coating was prepared from the mucilage of white dragon fruits. Quality parameters including color, weight loss, total soluble solids, titratable acidity, ascorbic acid, antioxidant analysis (total phenolic content and flavonoid content), and microbial analysis were measured throughout 21 days of storage at 4 °C. Results showed that the hurdle treatment extended shelf life by 21 days, reduced weight loss (0.87 ± 0.05%) and color changes (11.61 ± 0.95 ΔE), and inhibited microbes better than stand-alone treatments. Furthermore, fruits treated with the combination of UV-C and edible coating also contained higher total polyphenol content (0.132 ± 0.003 mg GAE/100 mL), total flavonoid content (13.179 ± 0.002 mg CE/100 mL), and ascorbic acid (1.07 ± 0.06 mg/100 mL). These results show that the combination of UV-C and edible coating as a hurdle treatment could be an innovative method to preserve shelf life and quality of fruits.
  3. Loo ZX, Kunasekaran W, Govindasamy V, Musa S, Abu Kasim NH
    ScientificWorldJournal, 2014;2014:186508.
    PMID: 25548778 DOI: 10.1155/2014/186508
    Human exfoliated deciduous teeth (SHED) and adipose stem cells (ASC) were suggested as alternative cell choice for cardiac regeneration. However, the true functionability of these cells toward cardiac regeneration is yet to be discovered. Hence, this study was carried out to investigate the innate biological properties of these cell sources toward cardiac regeneration. Both cells exhibited indistinguishable MSCs characteristics. Human stem cell transcription factor arrays were used to screen expression levels in SHED and ASC. Upregulated expression of transcription factor (TF) genes was detected in both sources. An almost equal percentage of >2-fold changes were observed. These TF genes fall under several cardiovascular categories with higher expressions which were observed in growth and development of blood vessel, angiogenesis, and vasculogenesis categories. Further induction into cardiomyocyte revealed ASC to express more significantly cardiomyocyte specific markers compared to SHED during the differentiation course evidenced by morphology and gene expression profile. Despite this, spontaneous cellular beating was not detected in both cell lines. Taken together, our data suggest that despite being defined as MSCs, both ASC and SHED behave differently when they were cultured in a same cardiomyocytes culture condition. Hence, vigorous characterization is needed before introducing any cell for treating targeted diseases.
  4. Vasanthan P, Govindasamy V, Gnanasegaran N, Kunasekaran W, Musa S, Abu Kasim NH
    J Cell Mol Med, 2015 Mar;19(3):566-80.
    PMID: 25475098 DOI: 10.1111/jcmm.12381
    MicroRNAs (miRNAs) are small non-coding RNAs that regulate translation of mRNA into protein and play a crucial role for almost all biological activities. However, the identification of miRNAs from mesenchymal stem cells (MSCs), especially from dental pulp, is poorly understood. In this study, dental pulp stem cells (DPSCs) were characterized in terms of their proliferation and differentiation capacity. Furthermore, 104 known mature miRNAs were profiled by using real-time PCR. Notably, we observed 19 up-regulated miRNAs and 29 significantly down-regulated miRNAs in DPSCs in comparison with bone marrow MSCs (BM-MSCs). The 19 up-regulated miRNAs were subjected to ingenuity analysis, which were composed into 25 functional networks. We have chosen top 2 functional networks, which comprised 10 miRNA (hsa-miR-516a-3p, hsa-miR-125b-1-3p, hsa-miR-221-5p, hsa-miR-7, hsa-miR-584-5p, hsa-miR-190a, hsa-miR-106a-5p, hsa-mir-376a-5p, hsa-mir-377-5p and hsa-let-7f-2-3p). Prediction of target mRNAs and associated biological pathways regulated by each of this miRNA was carried out. We paid special attention to hsa-miR-516a-3p and hsa-miR-7-5p as these miRNAs were highly expressed upon validation with qRT-PCR analysis. We further proceeded with loss-of-function analysis with these miRNAs and we observed that hsa-miR-516a-3p knockdown induced a significant increase in the expression of WNT5A. Likewise, the knockdown of hsa-miR-7-5p increased the expression of EGFR. Nevertheless, further validation revealed the role of WNT5A as an indirect target of hsa-miR-516a-3p. These results provide new insights into the dynamic role of miRNA expression in DPSCs. In conclusion, using miRNA signatures in human as a prediction tool will enable us to elucidate the biological processes occurring in DPSCs.
  5. Jayaraman P, Govindasamy V, Gnanasegaran N, Kunasekaran W, Vasanthan P, Musa S, et al.
    Clin Oral Investig, 2016 Jan;20(1):109-16.
    PMID: 26048030 DOI: 10.1007/s00784-015-1497-1
    Long-term culture system is used to prevent the impediment of insufficient cells and is good for low starting materials such as dental pulp or periodontal ligament. In general, although cell viability and functionality are the most common aspects taken into consideration in culturing cells for a long term, they may not truly represent the biological state of the cells. Hence, we explored the behaviour of another important aspect which is the immune properties in long-term cultured cells.
  6. Vasanthan P, Jayaraman P, Kunasekaran W, Lawrence A, Gnanasegaran N, Govindasamy V, et al.
    Naturwissenschaften, 2016 Aug;103(7-8):62.
    PMID: 27379400 DOI: 10.1007/s00114-016-1387-7
    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.
  7. Lau MN, Kunasekaran W, On YY, Tan LJ, Zaharin NA, H A Ghani S, et al.
    PLoS One, 2022;17(12):e0279129.
    PMID: 36574419 DOI: 10.1371/journal.pone.0279129
    The objective of this study was to compare the characteristics of Dental Pulp Stem Cells (DPSCs) derived from healthy human permanent teeth with those that were orthodontically-intruded to serve as potential Mesenchymal Stem Cells (MSC). Recruited subjects were treated with orthodontic intrusion on one side of the maxillary first premolar while the opposite side served as the control for a period of six weeks before the dental pulp was extracted. Isolated DPSCs from both the control and intruded samples were analyzed, looking at the morphology, growth kinetics, cell surface marker profile, and multilineage differentiation for MSC characterisation. Our study showed that cells isolated from both groups were able to attach to the cell culture flask, exhibited fibroblast-like morphology under light microscopy, able to differentiate into osteogenic, adipogenic and chondrogenic lineages as well as tested positive for MSCs cell surface markers CD90 and CD105 but negative for haematopoietic cell surface markers CD34 and HLA-DR. Both groups displayed a trend of gradually increasing population doubling time from passage 1 to passage 5. Viable DPSCs from both groups were successfully recovered from their cryopreserved state. In conclusion, DPSCs in the dental pulp of upper premolar not only remained viable after 6 weeks of orthodontic intrusion using fixed appliances but also able to develop into MSCs.
  8. Ahmad H, Thambiratnam K, Zulkifli AZ, Lawrence A, Jasim AA, Kunasekaran W, et al.
    Sensors (Basel), 2013 Sep 30;13(10):13276-88.
    PMID: 24084118 DOI: 10.3390/s131013276
    An efficient and low cost optical method for directly measuring the concentration of homogenous biological solutes is proposed and demonstrated. The proposed system operates by Fresnel reflection, with a flat-cleaved single-mode fiber serving as the sensor probe. A laser provides a 12.9 dBm sensor signal at 1,550 nm, while a computer-controlled optical power meter measures the power of the signal returned by the probe. Three different mesenchymal stem cell (MSC) lines were obtained, sub-cultured and trypsinized daily over 9 days. Counts were measured using a haemocytometer and the conditioned media (CM) was collected daily and stored at -80 °C. MSCs release excretory biomolecules proportional to their growth rate into the CM, which changes the refractive index of the latter. The sensor is capable of detecting changes in the number of stem cells via correlation to the change in the refractive index of the CM, with the measured power loss decreasing approximately 0.4 dB in the CM sample per average 1,000 cells in the MSC subculture. The proposed system is highly cost-effective, simple to deploy, operate, and maintain, is non-destructive, and allows reliable real-time measurement of various stem cell proliferation parameters.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links