Displaying all 2 publications

Abstract:
Sort:
  1. Sagadevan S, Rahman MZ, Léonard E, Losic D, Hessel V
    Nanomaterials (Basel), 2023 Feb 24;13(5).
    PMID: 36903724 DOI: 10.3390/nano13050846
    Graphene is a two-dimensional (2D) material with a single atomic crystal structure of carbon that has the potential to create next-generation devices for photonic, optoelectronic, thermoelectric, sensing, wearable electronics, etc., owing to its excellent electron mobility, large surface-to-volume ratio, adjustable optics, and high mechanical strength. In contrast, owing to their light-induced conformations, fast response, photochemical stability, and surface-relief structures, azobenzene (AZO) polymers have been used as temperature sensors and photo-switchable molecules and are recognized as excellent candidates for a new generation of light-controllable molecular electronics. They can withstand trans-cis isomerization by conducting light irradiation or heating but have poor photon lifetime and energy density and are prone to agglomeration even at mild doping levels, reducing their optical sensitivity. Graphene derivatives, including graphene oxide (GO) and reduced graphene oxide (RGO), are an excellent platform that, combined with AZO-based polymers, could generate a new type of hybrid structure with interesting properties of ordered molecules. AZO derivatives may modify the energy density, optical responsiveness, and photon storage capacity, potentially preventing aggregation and strengthening the AZO complexes. They are potential candidates for sensors, photocatalysts, photodetectors, photocurrent switching, and other optical applications. This review aimed to provide an overview of the recent progress in graphene-related 2D materials (Gr2MS) and AZO polymer AZO-GO/RGO hybrid structures and their synthesis and applications. The review concludes with remarks based on the findings of this study.
  2. Anita Lett J, Sagadevan S, Léonard E, Fatimah I, Motalib Hossain MA, Mohammad F, et al.
    Artif Organs, 2021 Dec;45(12):1501-1512.
    PMID: 34309044 DOI: 10.1111/aor.14045
    The primary role of bone tissue engineering is to reconcile the damaged bones and facilitate the speedy recovery of the injured bones. However, some of the investigated metallic implants suffer from stress-shielding, palpability, biocompatibility, etc. Consequently, the biodegradable scaffolds fabricated from polymers have gathered much attention from researchers and thus helped the tissue engineering sector by providing many alternative materials whose functionality is similar to that of natural bones. Herein, we present the fabrication and testing of a novel composite, magnesium (Mg)-doped hydroxyapatite (HAp) glazed onto polylactic acid (PLA) scaffolds where polyvinyl alcohol (PVA) used as a binder. For the composite formation, Creality Ender-3 pro High Precision 3D Printer with Shape tool 3D Technology on an FSD machine operated by Catia design software was employed. The composite has been characterized for the crystallinity (XRD), surface functionality (FTIR), morphology (FESEM), biocompatibility (hemolytic and protein absorption), and mechanical properties (stress-strain and maximum compressive strength). The powder XRD analysis confirmed the semicrystalline nature and intact structure of HAp even after doping with Mg, while FTIR studies for the successful formation of Mg-HAp/PVA@PLA composite. The FESEM provided analysis indicated for the 3D porous architecture and well-defined morphology to efficiently transport the nutrients, and the biocompatibility studies are supporting that the composite for blood compatible with the surface being suitable enough for the protein absorption. Finally, the composite's antibacterial activity (against Staphylococcus aureus and Escherichia coli) and the test of mechanical properties supported for the enhanced inhibition of active growth of microorganisms and maximum compressive strength, respectively. Based on the research outcomes of biocompatibility, antibacterial activity, and mechanical resistance, the fabricated Mg-HAp/PVA@PLA composite suits well as a promising biomaterial platform for orthopedic applications by functioning towards the open reduction internal fixation of bone fractures and internal repairs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links