Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Lam CK, Sundaraj K, Sulaiman MN
    Medicina (Kaunas), 2013;49(1):1-8.
    PMID: 23652710
    The aim of this study was to review the capability of virtual reality simulators in the application of phacoemulsification cataract surgery training. Our review included the scientific publications on cataract surgery simulators that had been developed by different groups of researchers along with commercialized surgical training products, such as EYESI® and PhacoVision®. The review covers the simulation of the main cataract surgery procedures, i.e., corneal incision, capsulorrhexis, phacosculpting, and intraocular lens implantation in various virtual reality surgery simulators. Haptics realism and visual realism of the procedures are the main elements in imitating the actual surgical environment. The involvement of ophthalmology in research on virtual reality since the early 1990s has made a great impact on the development of surgical simulators. Most of the latest cataract surgery training systems are able to offer high fidelity in visual feedback and haptics feedback, but visual realism, such as the rotational movements of an eyeball with response to the force applied by surgical instruments, is still lacking in some of them. The assessment of the surgical tasks carried out on the simulators showed a significant difference in the performance before and after the training.
  2. Ang HH, Lam CK, Wah MJ
    Chemotherapy, 1996 Sep-Oct;42(5):318-23.
    PMID: 8874969
    Six clones were derived from each Plasmodium falciparum isolate obtained from Malaysia, Africa and Thailand and were characterized against type II antifolate drugs, cycloguanil and pyrimethamine using the modified in vitro microtechnique. Results showed that these isolates were of a heterogeneous population, with 50% inhibitory concentrations of Gombak A clones at 0.0151-0.1450 and 0.0068-0.1158 microM, Gambian clones at 0.0056-0.1792 and 0.0004-0.0068 microM and TGR clones at 0.0103-0.0703 and 0.0776-0.3205 microM against cycloguanil and pyrimethamine, respectively. All clones displayed similar susceptibilities as their parent isolates except A/D3, A/D5, A/G4 and A/H7 clones which were sensitive to cycloguanil at 0.0735, 0.0151, 0.0540 and 0.0254 microM but Gm/B2 clone was resistant at 0.1792 microM, respectively. However, A/D3, TGR/B4, TGR/B7, TGR/C4, TGR/C7 and TGR/H2 clones were resistant to pyrimethamine at 0.1158, 0.1070, 0.1632, 0.1580, 0.2409 and 0.3205 microM, respectively. Further results indicated that they were pure clones compared to their parent isolates as their drug susceptibility studies were statistically different (p < 0.05).
  3. Talib I, Sundaraj K, Lam CK
    Sci Rep, 2019 11 07;9(1):16166.
    PMID: 31700129 DOI: 10.1038/s41598-019-52536-4
    This study aimed to quantify the association of four anthropometric parameters of the human arm, namely, the arm circumference (CA), arm length (LA), skinfold thickness (ST) and inter-sensor distance (ISD), with amplitude (RMS) and crosstalk (CT) of mechanomyography (MMG) signals. Twenty-five young, healthy, male participants were recruited to perform forearm flexion, pronation and supination torque tasks. Three accelerometers were employed to record the MMG signals from the biceps brachii (BB), brachialis (BRA) and brachioradialis (BRD) at 80% maximal voluntary contraction (MVC). Signal RMS was used to quantify the amplitude of the MMG signals from a muscle, and cross-correlation coefficients were used to quantify the magnitude of the CT among muscle pairs (BB & BRA, BRA & BRD, and BB & BRD). For all investigated muscles and pairs, RMS and CT showed negligible to low negative correlations with CA, LA and ISD (r = -0.0001--0.4611), and negligible to moderate positive correlations with ST (r = 0.004-0.511). However, almost all of these correlations were statistically insignificant (p > 0.05). These findings suggest that RMS and CT values for the elbow flexor muscles recorded and quantified using accelerometers appear invariant to anthropometric parameters.
  4. Talib I, Sundaraj K, Lam CK
    J Musculoskelet Neuronal Interact, 2020 06 01;20(2):194-205.
    PMID: 32481235
    OBJECTIVE: To analyse the influence of muscle fibre axis on the degree of crosstalk in mechanomyographic (MMG) signals during sustained isometric forearm flexion, pronation and supination exercises performed at 80% maximum voluntary contraction (MVC) at an elbow joint angle of 90°.

    METHODS: MMG signals in longitudinal, lateral and transverse directions of muscle fibres were recorded from the elbow flexors of twenty-five male subjects using triaxial accelerometers. Cross-correlation coefficients were used to quantify the degree of crosstalk in all nine possible pairs of fibre axes, all muscle pairs and all exercises.

    RESULTS: MMG root mean square (RMS) was statistically significant among the fibre axes (p<0.05, η2=0.17- 0.34) except for biceps brachii and brachioradialis in supination and brachialis in flexion. Overall mean crosstalk values in the three muscle pairs (biceps brachii & brachialis, brachialis & brachioradialis and brachioradialis & biceps brachii) were found to be 6.09-52.17%, 4.01-61.42% and 2.16-51.85%, respectively. Crosstalk values showed statistical significance among all nine axes pairs (p<0.05, η2=0.16-0.51) except for biceps brachii & brachialis during pronation. The transverse axes pair generated the lowest mean crosstalk values (2.16-9.14%).

    CONCLUSION: MMG signals recorded using accelerometers from the transverse axes of muscle fibres in the elbow flexors are unique and yield the least amount of crosstalk.

  5. Nabi FG, Sundaraj K, Lam CK
    J Pak Med Assoc, 2021 Jan;71(1(A)):41-46.
    PMID: 33484516 DOI: 10.47391/JPMA.156
    OBJECTIVE: Breath sound has information about underlying pathology and condition of subjects. The purpose of this study was to examine asthmatic acuteness levels (Mild, Moderate, Severe) using frequency features extracted from wheeze sounds. Further, analysis was extended to observe behaviour of wheeze sounds in different datasets.

    METHODS: Segmented and validated wheeze sounds was collected from 55 asthmatic patients from the trachea and lower lung base (LLB) during tidal breathing maneuvers. Segmented wheeze sounds have been grouped in to nine datasets based on auscultation location, breath phases and a combination of phase and location. Frequency based features F25, F50, F75, F90, F99 and mean frequency (MF) were calculated from normalized power spectrum. Subsequently, multivariate analysis was performed.

    RESULTS: Generally frequency features observe statistical significance (p < 0.05) for the majority of datasets to differentiate severity level Ʌ = 0.432-0.939, F(12, 196-1534) = 2.731-11.196, p < 0.05, ɳ2 = 0.061-0.568. It was observed that selected features performed better (higher effect size) for trachea related samples Ʌ = 0.432-0.620, F(12, 196-498) = 6.575-11.196, p < 0.05, ɳ2 = 0.386-0.568.

    CONCLUSIONS: The results demonstrated dthat severity levels of asthmatic patients with tidal breathing can be identified through computerized wheeze sound analysis. In general, auscultation location and breath phases produce wheeze sounds with different characteristics.

  6. Talib I, Sundaraj K, Lam CK
    J Biomech Eng, 2021 01 01;143(1).
    PMID: 32691054 DOI: 10.1115/1.4047850
    This study analyzed the crosstalk in mechanomyographic (MMG) signals from elbow flexors during isometric muscle actions from 20% to 100% maximum voluntary isometric contraction (MVIC). Twenty-five young, healthy, male participants performed the isometric elbow flexion, forearm pronation, and supination tasks at an elbow joint angle of 90 deg. The MMG signals from the biceps brachii (BB), brachialis (BRA), and brachioradialis (BRD) muscles were recorded using accelerometers. The cross-correlation coefficient was used to quantify the crosstalk in MMG signals, recorded in a direction transverse to muscle fiber axis, among the muscle pairs (P1: BB and BRA, P2: BRA and BRD, and P3: BB and BRD). In addition, the MMG RMS and MPF were quantified. The mean normalized RMS and mean MPF exhibited increasing (r > 0.900) and decreasing (r 
  7. Hoon AH, Lam CK, Wah MJ
    Antimicrob Agents Chemother, 1995 Mar;39(3):626-8.
    PMID: 7793863
    Malaysian, TGR (Thailand), and Gambian (West African) Plasmodium falciparum isolates were cultured in vitro by the candle jar method and were characterized for their susceptibilities to present antimalarial drugs by the modified in vitro microtechnique. Results showed that 93 and 47% of the Malaysian isolates were resistant at 50% inhibitory concentrations of 0.1415 to 0.7737 and 0.1025 to 0.1975 microM, respectively, while the rest were susceptible to choloroquine and cycloguanil at 0.0376 and 0.0306 to 0.0954 microM, respectively. All isolates were susceptible to mefloquine, quinine, and pyrimethamine at 0.0026 to 0.0172, 0.0062 to 0.0854, and 0.0149 to 0.0663 microM, respectively. In contrast, the Gambian isolate was susceptible to multiple drugs at 0.0024 to 0.0282 microM; TGR was resistant to chloroquine at 0.8147 microM but was susceptible to mefloquine, quinine, cycloguanil, and pyrimethamine at 0.0024, 0.0096, 0.0143, and 0.0495 microM, respectively.
  8. Lam CK, Sundaraj K, Sulaiman MN, Qamarruddin FA
    BMC Ophthalmol, 2016;16:88.
    PMID: 27296449 DOI: 10.1186/s12886-016-0269-2
    Computer based surgical training is believed to be capable of providing a controlled virtual environment for medical professionals to conduct standardized training or new experimental procedures on virtual human body parts, which are generated and visualised three-dimensionally on a digital display unit. The main objective of this study was to conduct virtual phacoemulsification cataract surgery to compare performance by users with different proficiency on a virtual reality platform equipped with a visual guidance system and a set of performance parameters.
  9. Hussain J, Sundaraj K, Subramaniam ID, Lam CK
    J Musculoskelet Neuronal Interact, 2019 09 01;19(3):276-285.
    PMID: 31475934
    OBJECTIVE: The objective of this study was to investigate fatigue in the three heads of the triceps brachii (TB) muscle using surface electromyography (sEMG) obtained at 30%, 45% and 60% of maximal voluntary contraction (MVC).

    METHODS: Twenty-five subjects performed isometric elbow extension until failure, and the rate of fatigue (ROF), time to fatigue (TTF) and normalized TTF (NTTF) were statistically analysed. Subsequently, the behaviour of root-mean-square (RMS), mean-power frequency (MPF) and median-power frequency (MDF) under pre-, onset- and post-fatigue conditions were compared.

    RESULTS: The findings indicated that, among the heads, ROF was statistically significant at 30% and 45% MVC (P<0.05) but TTF and NTTF at all intensities was statistically insignificant (P>0.05). For every head, only TTF was statistically significant (P<0.05) at different intensities. MPF and MDF under pre-, onset- and post-fatigue conditions were statistically significant (P<0.05) among the heads at all intensities, whereas RMS showed no such behaviour.

    CONCLUSION: The investigated parameters reveal that the three heads of TB act independently before fatigue onset and appear to work in union after fatigue. Synergist head pairs exhibit similar spectral and temporal behaviour in contrast to the non-synergist TB head pair. We find spectral parameters to be more specific predictors of fatigue.

  10. Talib I, Sundaraj K, Lam CK, Hussain J, Ali MA
    Eur J Appl Physiol, 2019 Jan;119(1):9-28.
    PMID: 30242464 DOI: 10.1007/s00421-018-3994-9
    PURPOSE: Crosstalk in myographic signals is a major hindrance to the understanding of local information related to individual muscle function. This review aims to analyse the problem of crosstalk in electromyography and mechanomyography.

    METHODS: An initial search of the SCOPUS database using an appropriate set of keywords yielded 290 studies, and 59 potential studies were selected after all the records were screened using the eligibility criteria. This review on crosstalk revealed that signal contamination due to crosstalk remains a major challenge in the application of surface myography techniques. Various methods have been employed in previous studies to identify, quantify and reduce crosstalk in surface myographic signals.

    RESULTS: Although correlation-based methods for crosstalk quantification are easy to use, there is a possibility that co-contraction could be interpreted as crosstalk. High-definition EMG has emerged as a new technique that has been successfully applied to reduce crosstalk.

    CONCLUSIONS: The phenomenon of crosstalk needs to be investigated carefully because it depends on many factors related to muscle task and physiology. This review article not only provides a good summary of the literature on crosstalk in myographic signals but also discusses new directions related to techniques for crosstalk identification, quantification and reduction. The review also provides insights into muscle-related issues that impact crosstalk in myographic signals.

  11. Nabi FG, Sundaraj K, Lam CK, Palaniappan R
    Comput Biol Med, 2019 01;104:52-61.
    PMID: 30439599 DOI: 10.1016/j.compbiomed.2018.10.035
    OBJECTIVE: This study aimed to investigate and classify wheeze sounds of asthmatic patients according to their severity level (mild, moderate and severe) using spectral integrated (SI) features.

    METHOD: Segmented and validated wheeze sounds were obtained from auscultation recordings of the trachea and lower lung base of 55 asthmatic patients during tidal breathing manoeuvres. The segments were multi-labelled into 9 groups based on the auscultation location and/or breath phases. Bandwidths were selected based on the physiology, and a corresponding SI feature was computed for each segment. Univariate and multivariate statistical analyses were then performed to investigate the discriminatory behaviour of the features with respect to the severity levels in the various groups. The asthmatic severity levels in the groups were then classified using the ensemble (ENS), support vector machine (SVM) and k-nearest neighbour (KNN) methods.

    RESULTS AND CONCLUSION: All statistical comparisons exhibited a significant difference (p 

  12. Talib I, Sundaraj K, Lam CK, Sundaraj S
    J Musculoskelet Neuronal Interact, 2018 12 01;18(4):446-462.
    PMID: 30511949
    This systematic review aims to categorically analyses the literature on the assessment of biceps brachii (BB) muscle activity through mechanomyography (MMG). The application of our search criteria to five different databases identified 319 studies. A critical review of the 48 finally selected records, revealed the diversity of protocols and parameters that are employed in MMG-based assessments of BB muscle activity. The observations were categorized into the following: muscle torque, fatigue, strength and physiology. The available information on the muscle contraction protocol, sensor(s), MMG signal parameters and obtained results were then tabulated based on these categories for further analysis. The review affirms that - 1) MMG is suitable for skeletal muscle activity assessment and can be employed potentially for further investigation of the BB muscle activity and condition (e.g., force, torque, fatigue, and contractile properties), 2) a majority of the records focused on static contractions of the BB, and the analysis of dynamic muscle contractions using MMG is thus a research gap, and 3) very few studies have focused on the analysis of BB muscle activity under externally stimulated contractions. Taken together, the findings of this review on BB activity assessment using MMG affirm the potential of MMG as an alternative tool.
  13. Hussain J, Sundaraj K, Subramaniam ID, Lam CK
    Front Physiol, 2020;11:112.
    PMID: 32153422 DOI: 10.3389/fphys.2020.00112
    The objective of this study was to investigate the effects of changes in exercise intensity and speed on the three heads of the triceps brachii (TB) during triceps push-down exercise until task failure. Twenty-five subjects performed triceps push-down exercise at three different intensities (30, 45, and 60% 1RM) and speeds (slow, medium, and fast) until failure, and surface electromyography (sEMG) signals were recorded from the lateral, long and medial heads of the TB. The endurance time (ET), number of repetitions (NR) and rate of fatigue (ROF) were analyzed. Subsequently, the root-mean-square (RMS), mean power frequency (MPF) and median frequency (MDF) under no-fatigue (NF) and fatigue (Fa) conditions were statistically compared. The findings reveal that ROF increases with increase in the intensity and speed, and the opposite were obtained for the ET. The ROF in the three heads were comparable for all intensities and speeds. The ROF showed a significant difference (P < 0.05) among the three intensities and speeds for all heads. The three heads showed significantly different (P < 0.05) MPF and MDF values for all the performed exercises under both conditions, whereas the RMS values were significantly different only under Fa conditions. The current observations suggest that exercise intensity and speed affect the ROF while changes in intensity do not affect the MPF and MDF under Fa conditions. The behavior of the spectral parameters indicate that the three heads do not work in unison under any of the conditions. Changes in the speed of triceps push-down exercise affects the lateral and long heads, but changes in the exercise intensity affected the attributes of all heads to a greater extent.
  14. Nabi FG, Sundaraj K, Lam CK, Palaniappan R
    J Asthma, 2020 04;57(4):353-365.
    PMID: 30810448 DOI: 10.1080/02770903.2019.1576193
    Objective: This study aimed to statistically analyze the behavior of time-frequency features in digital recordings of wheeze sounds obtained from patients with various levels of asthma severity (mild, moderate, and severe), and this analysis was based on the auscultation location and/or breath phase. Method: Segmented and validated wheeze sounds were collected from the trachea and lower lung base (LLB) of 55 asthmatic patients during tidal breathing maneuvers and grouped into nine different datasets. The quartile frequencies F25, F50, F75, F90 and F99, mean frequency (MF) and average power (AP) were computed as features, and a univariate statistical analysis was then performed to analyze the behavior of the time-frequency features. Results: All features generally showed statistical significance in most of the datasets for all severity levels [χ2 = 6.021-71.65, p 
  15. Talib I, Sundaraj K, Hussain J, Lam CK, Ahmad Z
    Sci Rep, 2022 Sep 27;12(1):16086.
    PMID: 36168025 DOI: 10.1038/s41598-022-20223-6
    This study aimed to analyze anthropometrics and mechanomyography (MMG) signals as forearm flexion, pronation, and supination torque predictors. 25 young, healthy, male participants performed isometric forearm flexion, pronation, and supination tasks from 20 to 100% maximal voluntary isometric contraction (MVIC) while maintaining 90° at the elbow joint. Nine anthropometric measures were recorded, and MMG signals from the biceps brachii (BB), brachialis (BRA), and brachioradialis (BRD) muscles were digitally acquired using triaxial accelerometers. These were then correlated with torque values. Significant positive correlations were found for arm circumference (CA) and MMG root mean square (RMS) values with flexion torque. Flexion torque might be predicted using CA (r = 0.426-0.575), a pseudo for muscle size while MMGRMS (r = 0.441), an indication of muscle activation.
  16. Ebrahimi F, Ibrahim B, Teh CH, Murugaiyah V, Lam CK
    Planta Med, 2017 Jan;83(1-02):172-182.
    PMID: 27399233 DOI: 10.1055/s-0042-110857
    Quassinoids, the major secondary metabolites of Eurycoma longifolia roots, improve male fertility. Hence, it is crucial to investigate their quantitative level in E. longifolia extracts. A profile was established to identify the primary metabolites and major quassinoids, and quantify quassinoids using external calibration curves. Furthermore, the metabolic discrimination of E. longifolia roots from different regions was investigated. The (1)H-NMR spectra of the quassinoids, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside were obtained. The (1)H-NMR profiles of E. longifolia root aqueous extracts from Perak (n = 30) were obtained and used to identify primary metabolites and the quassinoids. Selangor, Kedah, Terengganu (n = 5 for each), and Perak samples were checked for metabolic discrimination. Hotelling's T(2) plot was used to check for outliers. Orthogonal partial least-squares discriminant analysis was run to reveal the discriminatory metabolites. Perak samples contained formic, succinic, methylsuccinic, fumaric, lactic, acetic and syringic acids as well as choline, alanine, phenylalanine, tyrosine, α-glucose, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside. The extracts from other locations contained the same metabolites. The limit of quantification values were 1.96 (eurycomanone), 15.62 (eurycomanol), 3.91 (13,21-dihydroeurycomanone), and 31.25 (eurycomanol-2-O-β-D-glycopyranoside) ppm. The Hotelling's T(2) plot revealed no outlier. The orthogonal partial least-squares discriminant analysis model showed that choline, eurycomanol, eurycomanol-2-O-β-D-glycopyranoside, and lactic and succinic acid levels were different among regions. Terengganu and Perak samples contained higher amounts of eurycomanol and eurycomanol-2-O-β-D-glycopyranoside, respectively. The current approach efficiently detected E. longifolia root metabolites, quantified the quassinoids, and discriminated E. longifolia roots from different locations. These findings could be applicable to future research on E. longifolia where the higher content of quassinoids is required.
  17. Mohamad Ismail MR, Lam CK, Sundaraj K, Rahiman MHF
    J Musculoskelet Neuronal Interact, 2021 12 01;21(4):481-494.
    PMID: 34854387
    OBJECTIVE: This paper presents the analyses of the fatigue effect on the cross-talk in mechanomyography (MMG) signals of extensor and flexor forearm muscles during pre- and post-fatigue maximum voluntary isometric contraction (MVIC).

    METHODS: Twenty male participants performed repetitive submaximal (60% MVIC) grip muscle contractions to induce muscle fatigue and the results were analyzed during the pre- and post-fatigue MVIC. MMG signals were recorded on the extensor digitorum (ED), extensor carpi radialis longus (ECRL), flexor digitorum superficialis (FDS) and flexor carpi radialis (FCR) muscles. The cross-correlation coefficient was used to quantify the cross-talk values in forearm muscle pairs (MP1, MP2, MP3, MP4, MP5 and MP6). In addition, the MMG RMS and MMG MPF were calculated to determine force production and muscle fatigue level, respectively.

    RESULTS: The fatigue effect significantly increased the cross-talk values in forearm muscle pairs except for MP2 and MP6. While the MMG RMS and MMG MPF significantly decreased (p<0.05) based on the examination of the mean differences from pre- and post-fatigue MVIC.

    CONCLUSION: The presented results can be used as a reference for further investigation of cross-talk on the fatigue assessment of extensor and flexor muscles' mechanic.

  18. Osman H, Arshad A, Lam CK, Bagley MC
    Chem Cent J, 2012 Apr 17;6(1):32.
    PMID: 22510146 DOI: 10.1186/1752-153X-6-32
    BACKGROUND: Coumarin derivatives exhibit a wide range of biological properties including promising antioxidant activity. Furthermore, microwave-assisted organic synthesis has delivered rapid routes to N- and O-containing heterocycles, including coumarins and thiazoles. Combining these features, the use of microwave-assisted processes will provide rapid access to a targeted coumarin library bearing a hydrazino pharmacophore for evaluation of antioxidant properties

    RESULTS: Microwave irradiation promoted 3 of the 4 steps in a rapid, convergent synthesis of a small library of hydrazinyl thiazolyl coumarin derivatives, all of which exhibited significant antioxidant activity comparable to that of the natural antioxidant quercetin, as established by DPPH and ABTS radical assays

    CONCLUSIONS: Microwave dielectric heating provides a rapid and expedient route to a series of hydrazinyl thiazolyl coumarins to investigate their radical scavenging properties. Given their favourable properties, in comparison with known antioxidants, these coumarin derivatives are promising leads for further development and optimization.

  19. Arshad A, Osman H, Bagley MC, Lam CK, Mohamad S, Zahariluddin AS
    Eur J Med Chem, 2011 Sep;46(9):3788-94.
    PMID: 21712145 DOI: 10.1016/j.ejmech.2011.05.044
    Two novel series of hydrazinyl thiazolyl coumarin derivatives have been synthesized and fully characterized by IR, (1)H NMR, (13)C NMR, elemental analysis and mass spectral data. The structures of some compounds were further confirmed by X-ray crystallography. All of these derivatives, 10a-d and 15a-h, were screened in vitro for antimicrobial activity against various bacteria species including Mycobacterium tuberculosis and Candida albicans. The compounds 10c, 10d and 15e exhibited very good activities against all of the tested microbial strains.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links