Displaying all 6 publications

Abstract:
Sort:
  1. Lawal A, Tan GH, Alsharif AM
    J AOAC Int, 2016 Nov 01;99(6):1383-1394.
    PMID: 27667201 DOI: 10.5740/jaoacint.16-0272
    Food quality and food safety are major challenges affecting agricultural and industrial aspects of production. Many contaminants from different sources contaminate foods and drinks, leading to disastrous health problems like gene mutations and cancer. Previously, many different methods have been used for the analysis of these contaminants. Liquid-liquid extraction (LLE) has been the most well-known conventional technique used, but its limitations are its tediousness, time required, and the use of large quantities of toxic organic solvents. These limitations have led to the search for other, efficient techniques that are more environmentally friendly. Hence, this review highlights recent advances in liquid-phase (single-drop, hollow fiber, and dispersive liquid-liquid) microextraction procedures for food and drink analyses. Such modifications can be justified for solving limitations associated with the traditional LLE method. The objective of this review is to serve as a reference platform for providing effective management tools for solving problems of pollution, clean-up, and control of food quality and safety globally.
  2. Alsharif AM, Tan GH, Choo YM, Lawal A
    J Chromatogr Sci, 2017 03 01;55(3):378-391.
    PMID: 27903555 DOI: 10.1093/chromsci/bmw188
    Hollow fiber liquid-phase microextraction (HF-LPME) techniques coupled to chromatographic systems have been widely used for extraction and determination of diverse compounds. HF-LPME was able to provide better results in precision, accuracy, selectivity and enrichment factor, in addition to reduction of matrix effect and carry over. It is applicable within a wide pH range and compatible with most analytical instruments which enable the utilization of HF-LPME in a wide variety of applications. This review focused on the modified HF-LPME techniques, efficiency, comparison to other LPME methods and applications.
  3. Lawal A, Wong RCS, Tan GH, Abdulra'uf LB, Alsharif AMA
    J Chromatogr Sci, 2018 Aug 01;56(7):656-669.
    PMID: 29688338 DOI: 10.1093/chromsci/bmy032
    Fruits and vegetables constitute a major type of food consumed daily apart from whole grains. Unfortunately, the residual deposits of pesticides in these products are becoming a major health concern for human consumption. Consequently, the outcome of the long-term accumulation of pesticide residues has posed many health issues to both humans and animals in the environment. However, the residues have previously been determined using conventionally known techniques, which include liquid-liquid extraction, solid-phase extraction (SPE) and the recently used liquid-phase microextraction techniques. Despite the positive technological effects of these methods, their limitations include; time-consuming, operational difficulty, use of toxic organic solvents, low selective property and expensive extraction setups, with shorter lifespan of instrumental performances. Thus, the potential and maximum use of these methods for pesticides residue determination has resulted in the urgent need for better techniques that will overcome the highlighted drawbacks. Alternatively, attention has been drawn recently towards the use of quick, easy, cheap, effective, rugged and safe technique (QuEChERS) coupled with dispersive solid-phase extraction (dSPE) to overcome the setback challenges experienced by the previous technologies. Conclusively, the reviewed QuEChERS-dSPE techniques and the recent cleanup modifications justifiably prove to be reliable for routine determination and monitoring the concentration levels of pesticide residues using advanced instruments such as high-performance liquid chromatography, liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry.
  4. Ayipo YO, Ahmad I, Alananzeh W, Lawal A, Patel H, Mordi MN
    J Biomol Struct Dyn, 2023 Nov;41(19):10096-10116.
    PMID: 36476097 DOI: 10.1080/07391102.2022.2153168
    Antibiotic resistance (AR) remains one of the leading global health challenges, mostly implicated in disease-related deaths. The Enterobacteriaceae-producing metallo-β-lactamases (MBLs) are critically involved in AR pathogenesis through Zn-dependent catalytic destruction of β-lactam antibiotics, yet with limited successful clinical inhibitors. The efficacy of relevant broad-spectrum β-lactams including imipenem and meropenem are seriously challenged by their susceptibility to the Zn-dependent carbapenemase hydrolysis, as such, searching for alternatives remains imperative. In this study, computational molecular modelling and virtual screening methods were extensively applied to identify new putative Zn-sensitive broad-spectrum inhibitors of MBLs, specifically imipenemase-1 (IMP-1) from the IBScreen database. Three ligands, STOCK3S-30154, STOCK3S-30418 and STOCK3S-30514 selectively displayed stronger binding interactions with the enzymes compared to reference inhibitors, imipenem and meropenem. For instance, the ligands showed molecular docking scores of -9.450, -8.005 and -10.159 kcal/mol, and MM-GBSA values of -40.404, -31.902 and -33.680 kcal/mol respectively against the IMP-1. Whereas, imipenem and meropenem showed docking scores of -9.038 and -10.875 kcal/mol, and MM-GBSA of -31.184 and -32.330 kcal/mol respectively against the enzyme. The ligands demonstrated good thermodynamic stability and compactness in complexes with IMP-1 throughout the 100 ns molecular dynamics (MD) trajectories. Interestingly, their binding affinities and stabilities were significantly affected in contacts with the remodelled Zn-deficient IMP-1, indicating sensitivity to the carbapenemase active Zn site, however, with non-β-lactam scaffolds, tenable to resist catalytic hydrolysis. They displayed ideal drug-like ADMET properties, thus, representing putative Zn-sensitive non-β-lactam inhibitors of IMP-1 amenable for further experimental studies.
  5. Ayipo YO, Bakare AA, Badeggi UM, Jimoh AA, Lawal A, Mordi MN
    Curr Res Chem Biol, 2022;2:100021.
    PMID: 35815068 DOI: 10.1016/j.crchbi.2022.100021
    Viral diseases are prominent among the widely spread infections threatening human well-being. Real-life clinical successes of the few available therapeutics are challenged by pathogenic resistance and suboptimal delivery to target sites. Nanotechnology has aided the design of functionalised and non-functionalised Au and Ag nanobiomaterials through physical, chemical and biological (green synthesis) methods with improved antiviral efficacy and delivery. In this review, innovative designs as well as interesting antiviral activities of the nanotechnology-inclined biomaterials of Au and Ag, reported in the last 5 years were critically overviewed against several viral diseases affecting man. These include influenza, respiratory syncytial, adenovirus, severe acute respiratory syndromes (SARS), rotavirus, norovirus, measles, chikungunya, HIV, herpes simplex virus, dengue, polio, enterovirus and rift valley fever virus. Notably identified among the nanotechnologically designed promising antiviral agents include AuNP-M2e peptide vaccine, AgNP of cinnamon bark extract and AgNP of oseltamivir for influenza, PVP coated AgNP for RSV, PVP-AgNPs for SARS-CoV-2, AuNRs of a peptide pregnancy-induce d hypertension and AuNP nanocarriers of antigen for MERS-CoV and SARS-CoV respectively. Others are AgNPs of collagen and Bacillus subtilis for rotavirus, AgNPs labelled Ag30-SiO 2 for murine norovirus in water, AuNPs of Allium sativum and AgNPs of ribavirin for measles, AgNPs of Citrus limetta and Andrographis Paniculata for Chikungunya, AuNPs of efavirenz and stavudine, and AgNPs-curcumin for HIV, NPAuG3-S8 for HSV, AgNPs of Moringa oleifera and Bruguiera cylindrica for dengue while AgNPs of polyethyleneimine and siRNA analogues displayed potency against enterovirus. The highlighted candidates are recommended for further translational studies towards antiviral therapeutic designs.
  6. Itas YS, Suleiman AB, Ndikilar CE, Lawal A, Razali R, Ullah MH, et al.
    ACS Omega, 2023 Oct 17;8(41):38632-38640.
    PMID: 37867711 DOI: 10.1021/acsomega.3c05907
    This study investigated the photocatalytic properties of MoS2-doped boron nitride nanotubes (BNNTs) for overall water splitting using popular density functional theory (DFT). Calculations of the structural, mechanical, electronic, and optical properties of the investigated systems were performed using both the generalized gradient approximation and the GW quasi-particle correction methods. In our calculations, it was observed that only (10, 10) and (12, 12) single-walled BNNTs (SWBNNTs) turned out to be stable toward MoS2 doping. Electronic property calculations revealed metallic behavior of (10, 10)-MoS2-doped SWBNNTs, while the band gap of (12, 12) SWBNNT was narrowed to 2.5 eV after MoS2 doping, which is within the obtained band gaps for other photocatalysts. Hence, MoS2 influences the conduction band of pure BNNT and improves its photocatalytic properties. The water-splitting photocatalytic behavior is found in (12, 12) MoS2-doped SWBNNT, which showed higher water oxidation (OH-/O2) and reduction (H+/H2) potentials. In addition, optical spectral calculations showed that MoS2-doped SWBNNT had an optical absorption edge of 2.6 eV and a higher absorption in the visible region. All of the studied properties confirmed MoS2-doped SWBNNT as a better candidate for next-generation photocatalysts for hydrogen evolution through the overall water-splitting process.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links