Displaying all 5 publications

Abstract:
Sort:
  1. Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, et al.
    Nat Ecol Evol, 2017 11;1(11):1785.
    PMID: 29046563 DOI: 10.1038/s41559-017-0380-7
    In this Article originally published, owing to a technical error, the author 'Laurent Chirio' was mistakenly designated as a corresponding author in the HTML version, the PDF was correct. This error has now been corrected in the HTML version. Further, in Supplementary Table 3, the authors misspelt the surname of 'Danny Meirte'; this file has now been replaced.
  2. Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, et al.
    Nat Ecol Evol, 2017 Nov;1(11):1677-1682.
    PMID: 28993667 DOI: 10.1038/s41559-017-0332-2
    The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world's arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently.
  3. Pandit PS, Anthony SJ, Goldstein T, Olival KJ, Doyle MM, Gardner NR, et al.
    Commun Biol, 2023 Jan 10;6(1):25.
    PMID: 36627372 DOI: 10.1038/s42003-022-04364-y
  4. Pandit PS, Anthony SJ, Goldstein T, Olival KJ, Doyle MM, Gardner NR, et al.
    Commun Biol, 2022 Aug 19;5(1):844.
    PMID: 35986178 DOI: 10.1038/s42003-022-03797-9
    Host-virus associations have co-evolved under ecological and evolutionary selection pressures that shape cross-species transmission and spillover to humans. Observed virus-host associations provide relevant context for newly discovered wildlife viruses to assess knowledge gaps in host-range and estimate pathways for potential human infection. Using models to predict virus-host networks, we predicted the likelihood of humans as hosts for 513 newly discovered viruses detected by large-scale wildlife surveillance at high-risk animal-human interfaces in Africa, Asia, and Latin America. Predictions indicated that novel coronaviruses are likely to infect a greater number of host species than viruses from other families. Our models further characterize novel viruses through prioritization scores and directly inform surveillance targets to identify host ranges for newly discovered viruses.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links