Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Haupa KA, Ong WS, Lee YP
    Phys Chem Chem Phys, 2020 Mar 18;22(11):6192-6201.
    PMID: 32129366 DOI: 10.1039/c9cp06279c
    Acetamide (CH3CONH2) is the largest molecule containing an amide bond that has been detected in an interstellar medium; it is considered to be a precursor for complex organic molecules (COM). We utilized the advantages of a para-hydrogen (p-H2) quantum-solid matrix host to perform efficient reactions of hydrogen atoms with CH3CONH2. The H-abstraction reaction from the methyl group of CH3CONH2 to produce the 2-amino-2-oxoethyl radical, ˙CH2CONH2, was observed as the sole reaction channel in solid p-H2 at 3.3 K, consistent with theoretical predictions that this reaction has the smallest barrier among all possible channels. Our results show that the amide bond of acetamide is unaffected by hydrogen exposure, but the hydrogen abstraction activates this molecule to react with other species on its methyl site to extend its size or to include other functional groups as a first step to form COM under prebiotic or abiotic conditions. This previously neglected path should be considered in the astrochemical modeling. The photolysis of ˙CH2CONH2 at wavelengths 380-450 nm produces ketene; this step might provide a plausible mechanism to explain the anti-correlated abundance of ketene and acetamide in some astronomical observations.
  2. Gan HM, Lee YP, Austin CM
    Front Microbiol, 2017;8:1880.
    PMID: 29046667 DOI: 10.3389/fmicb.2017.01880
    We improved upon the previously reported draft genome of Hydrogenophaga intermedia strain PBC, a 4-aminobenzenesulfonate-degrading bacterium, by supplementing the assembly with Nanopore long reads which enabled the reconstruction of the genome as a single contig. From the complete genome, major genes responsible for the catabolism of 4-aminobenzenesulfonate in strain PBC are clustered in two distinct genomic regions. Although the catabolic genes for 4-sulfocatechol, the deaminated product of 4-aminobenzenesulfonate, are only found in H. intermedia, the sad operon responsible for the first deamination step of 4-aminobenzenesulfonate is conserved in various Hydrogenophaga strains. The absence of pabB gene in the complete genome of H. intermedia PBC is consistent with its p-aminobenzoic acid (pABA) auxotrophy but surprisingly comparative genomics analysis of 14 Hydrogenophaga genomes indicate that pABA auxotrophy is not an uncommon feature among members of this genus. Of even more interest, several Hydrogenophaga strains do not possess the genomic potential for hydrogen oxidation, calling for a revision to the taxonomic description of Hydrogenophaga as "hydrogen eating bacteria."
  3. Tan MH, Gan HM, Lee YP, Austin CM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):3981-3982.
    PMID: 25541307
    The mitochondrial genome sequence of the purple mottled shore crab, Cyclograpsus granulosus, is documented (GenBank accession number: LN624373), which makes it the third for genera of the superfamily Grapsoidea. Cyclograpsus granulosus has a mitogenome of 16,300 bp consisting of 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of the C. granulosus mitogenome is 36.15% for T, 19.54% for C, 33.14% for A and 11.17% for G, with an AT bias of 69.29%. The mitogenome gene order is atypical for the brachyuran crabs, but is identical to species of the genus Eriocheir from the same family.
  4. Tan MH, Gan HM, Lee YP, Austin CM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):3983-3984.
    PMID: 25541305
    The mitochondrial genome sequence of the porcellanid crab, Petrolisthes haswelli is provided, making it the second for the family Porcellanidae and the third for the superfamily Galatheoidea. Petrolisthes haswelli has a mitogenome of 15,348 bp consisting of 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of the P. haswelli mitogenome is 35.66% for T, 18.65% for C, 34.35% for A and 11.34% for G, with an AT bias of 70.01%. The mitogenome gene order is identical to the mitogenome of Neopetrolisthes maculatus, the only other species of the family with a sequenced mitogenome.
  5. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25423512 DOI: 10.3109/19401736.2014.982587
    The mitochondrial genome sequence of the ghost crab, Ocypode ceratophthalmus, is documented (GenBank accession number: LN611669) in this article. This is the first mitogenome for the family Ocypodidae and the second for the order Ocypodoidea. Ocypode ceratophthalmus has a mitogenome of 15,564 base pairs consisting of 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of the O. ceratophthalmus mitogenome is 35.78% for T, 19.36% for C, 33.73% for A and 11.13% for G, with an AT bias of 69.51% and the gene order is the typical arrangement for brachyuran crabs.
  6. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25423510 DOI: 10.3109/19401736.2014.982585
    The Mictyris longicarpus (soldier crab) complete mitochondrial genome sequence is reported making it the first for the family Mictyridae and the second for the superfamily Ocypodoidea. The mitogenome is 15,548 base pairs made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The soldier crab mitogenome gene order is characteristic of brachyuran crabs with a base composition of 36.58% for T, 19.15% for C, 32.43% for A and 11.83% for G, with an AT bias of 69.01%.
  7. Gan HY, Gan HM, Lee YP, Austin CM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):3985-3986.
    PMID: 25543913
    The complete mitochondrial genome of the Bass yabby Trypaea australiensis was obtained from a partial genome scan using the MiSeq sequencing system. The T. australiensis mitogenome is 16,821 bp in length (70.25% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a putative 1977 bp non-coding AT-rich region. This Trypaea mitogenome sequence is the 5th for the family Callianassidae and represents a new gene order for the Decapoda involving protein-coding, rRNA and tRNA genes and the control region.
  8. Gan HY, Gan HM, Lee YP, Austin CM
    PMID: 25693708 DOI: 10.3109/19401736.2015.1007311
    The mitochondrial genome of the rock pool prawn (Palaemon serenus), is sequenced, making it the third for genera of the family Palaemonidae and the first for the genus Palaemon. The mitogenome is 15,967 base pairs in length and comprises 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The P. serenus mitogenome has an AT bias of 58.97% and a base composition of 29.79% for T, 24.14% for C, 29.18% for A, and 16.89% for G. The mitogenome gene order of P. serenus is identical to Exopalaemon carinicauda.
  9. Gan HY, Gan HM, Lee YP, Austin CM
    PMID: 25693707 DOI: 10.3109/19401736.2015.1007312
    The mitochondrial genome sequence of the Australian freshwater shrimp, Paratya australiensis, is presented, which is the fourth for genera of the superfamily Atyoidea and the first atyid from the southern hemisphere. The base composition of the P. australiensis, mitogenome is 33.55% for T, 18.24% for C, 35.16% for A, and 13.06% for G, with an AT bias of 71.58%. It has a mitogenome of 15,990 base pairs comprised of 13 protein-coding, 2 ribosomal subunit and 22 transfer RNAs genes and a non-coding AT-rich region. The mitogenome gene order for the species is typical for atyid shrimps, which conform to the primitive pan crustacean model.
  10. Gan HM, Tan MH, Lee YP, Austin CM
    PMID: 25329292 DOI: 10.3109/19401736.2014.974174
    The mitogenome of the Australian freshwater blackfish, Gadopsis marmoratus was recovered coverage by genome skimming using the MiSeq sequencer (GenBank Accession Number: NC_024436). The blackfish mitogenome has 16,407 base pairs made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 819 bp non-coding AT-rich region. This is the 5th mitogenome sequence to be reported for the family Percichthyidae.
  11. Gan HM, Tan MH, Lee YP, Austin CM
    PMID: 25329290 DOI: 10.3109/19401736.2014.974173
    The mitochondrial genome sequence of the Australian tadpole shrimp, Triops australiensis is presented (GenBank Accession Number: NC_024439) and compared with other Triops species. Triops australiensis has a mitochondrial genome of 15,125 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The T. australiensis mitogenome is composed of 36.4% A, 16.1% C, 12.3% G and 35.1% T. The mitogenome gene order conforms to the primitive arrangement for Branchiopod crustaceans, which is also conserved within the Pancrustacean.
  12. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25103431 DOI: 10.3109/19401736.2014.947587
    The mitochondrial genome sequence of the stone crab, Myomenippe fornasinii, second of the superfamily Eriphioidea is documented. Myomenippe fornasinii has a mitogenome of 15,658 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of the M. fornasinii mitogenome is 36.10% for T, 18.52% for C, 35.48% for A, and 9.90% for G, with an AT bias of 71.58%. The mitogenome gene order conforms to what is the standard arrangement for brachyuran crabs.
  13. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25103440 DOI: 10.3109/19401736.2014.945554
    The mitochondrial genome sequence of the Morton Bay bug, Thenus orientalis, is documented, which makes it the second mitogenome for species of the family Scyllaridae and the ninth for members of the superfamily Palinuroidae. Thenus orientalis has a mitogenome of 16,826 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 23 transfer RNAs, and a non-coding AT-rich region. The base composition of the T. orientalis mitogenome is 31.31% for T, 23.77% for C, 31.05% for A, and 13.87% for G, with an AT bias of 62.36%. In addition to a duplicated trnS1 and several other tRNA gene rearrangements, the mitogenome gene order has novel protein coding gene order with the nad6 and cob genes translocated as a block to a location downstream of the nad3 gene.
  14. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25090400 DOI: 10.3109/19401736.2014.945553
    The complete mitochondrial genome of the swimming crab Thalamita crenata was obtained from a partial genome scan using the MiSeq sequencing system. The Thalamita crenata mitogenome has 15,787 base pairs (70% A+T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a putative 897 bp non-coding AT-rich region. This Thalamita mitogenome sequence is the first for the genus and the eighth for the family Portunidae.
  15. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25090387 DOI: 10.3109/19401736.2014.945572
    The complete mitochondrial genome of the moon crab Ashtoret lunaris was obtained from a partial genome scan using the MiSeq sequencing system. The Ashtoret lunaris mitogenome is 15,807 base pairs in length (70% A + T content) and made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a putative 956 bp non-coding AT-rich region. This A. lunaris mitogenome sequence is the first for the genus, as well as the family Matutidae and superfamily Calappoidea.
  16. Harrisson K, Pavlova A, Gan HM, Lee YP, Austin CM, Sunnucks P
    Heredity (Edinb), 2016 Jun;116(6):506-15.
    PMID: 26883183 DOI: 10.1038/hdy.2016.8
    Climatic differences across a taxon's range may be associated with specific bioenergetic demands and may result in genetics-based metabolic adaptation, particularly in aquatic ectothermic organisms that rely on heat exchange with the environment to regulate key physiological processes. Extending down the east coast of Australia, the Great Dividing Range (GDR) has a strong influence on climate and the evolutionary history of freshwater fish species. Despite the GDR acting as a strong contemporary barrier to fish movement, many species, and species with shared ancestries, are found on both sides of the GDR, indicative of historical dispersal events. We sequenced complete mitogenomes from the four extant species of the freshwater cod genus Maccullochella, two of which occur on the semi-arid, inland side of the GDR, and two on the mesic coastal side. We constructed a dated phylogeny and explored the relative influences of purifying and positive selection in the evolution of mitogenome divergence among species. Results supported mid- to late-Pleistocene divergence of Maccullochella across the GDR (220-710 thousand years ago), bringing forward previously reported dates. Against a background of pervasive purifying selection, we detected potentially functionally relevant fixed amino acid differences across the GDR. Although many amino acid differences between inland and coastal species may have become fixed under relaxed purifying selection in coastal environments rather than positive selection, there was evidence of episodic positive selection acting on specific codons in the Mary River coastal lineage, which has consistently experienced the warmest and least extreme climate in the genus.
  17. Othman NQ, Sulaiman S, Lee YP, Tan JS
    Data Brief, 2019 Aug;25:104288.
    PMID: 31453289 DOI: 10.1016/j.dib.2019.104288
    To date, Ganoderma boninense is known to be the causal agent of basal stem rot (BSR) disease in oil palm (Elaeis guineensis). This disease causes rotting in the roots, basal and upper stem of oil palm. Infection causes progressive destruction of the basal tissues at the oil palm trunk and internal dry rotting, particularly at the intersection between the bole and trunk. Molecular responses of oil palm during infection are not well study although this information is crucial to strategize effective measures to control or eliminate BSR. Here we report three sets of transcriptome data from samples of near-rot section of basal stem tissue of oil palm tree infected with G. boninense (IPIT), healthy section of basal stem tissue of the same G. boninense infected palm (IPHT) and the healthy section of basal stem tissue of the healthy palm (HPHT). The raw reads were deposited into NCBI database and can be accessed via BioProject accession number PRJNA530030.
  18. Zuther E, Lee YP, Erban A, Kopka J, Hincha DK
    Adv Exp Med Biol, 2018 10 6;1081:81-98.
    PMID: 30288705 DOI: 10.1007/978-981-13-1244-1_5
    During low-temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. The molecular mechanisms involved in cold acclimation have been mostly investigated in Arabidopsis thaliana. In addition, other Brassicaceae species related to A. thaliana have been employed in recent years to study plant stress responses on a phylogenetically broader basis and in some cases with extremophile species with a much higher stress tolerance. In this paper, we briefly summarize cold acclimation responses in A. thaliana and current knowledge about cold acclimation in A. thaliana relatives with special emphasis on Eutrema salsugineum and two closely related Thellungiella species. We then present a transcriptomic and metabolomic analysis of cold acclimation in five A. thaliana and two E. salsugineum accessions that differ widely in their freezing tolerance. Differences in the cold responses of the two species are discussed.
  19. Sulaiman S, Othman NQ, Tan JS, Lee YP
    Data Brief, 2020 Apr;29:105167.
    PMID: 32025548 DOI: 10.1016/j.dib.2020.105167
    Ganoderma boninense is a soil-borne Basidiomycete pathogenic fungus that eminent as the key causal of devastating disease in oil palm, named basal stem rot. Being a threat to sustainable palm oil production, it is essential to comprehend the fundamental view of this fungus. However, there is gap of information due to its limited number of genome sequence that is available for this pathogenic fungus. This implies the hitches in performing biological research to unravel the mechanism underlying the pathogen attack in oil palm. Therefore, here we report a dataset of draft genome of G. boninense that was sequenced using Illumina Hiseq 2000. The raw reads were deposited into NCBI database (SRX7136614 and SRX7136615) and can be accessed via Bioproject accession number PRJNA503786.
  20. Lee YP, Gan HM, Tan MH, Lys I, Page R, Dias Wanigasekera B, et al.
    PMID: 25707411 DOI: 10.3109/19401736.2015.1018209
    The mitogenome of Paranephrops planifrons, was obtained by next generation sequencing. This crayfish has a mitochondrial genome of 16,174 base pairs with 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs (tRNA), and a non-coding AT-rich region of 771 bp. The P. planifrons nucleotide composition is: 33.63% for T, 21.92% for C, 34.46% for A, and 9.98% for G and has a 68.09% AT bias. While the mitogenome gene order for this species is consistent with aspects of the highly distinctive parastacid crayfish mitogenome gene arrangement, it has a novel gene order involving the rearrangements of a protein coding and several tRNA genes.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links