Displaying publications 1 - 20 of 123 in total

  1. Chen J, Ahmad R, Li W, Swain M, Li Q
    J R Soc Interface, 2015 Aug 06;12(109):20150325.
    PMID: 26224566 DOI: 10.1098/rsif.2015.0325
    The prevalence of prosthodontic treatment has been well recognized, and the need is continuously increasing with the ageing population. While the oral mucosa plays a critical role in the treatment outcome, the associated biomechanics is not yet fully understood. Using the literature available, this paper provides a critical review on four aspects of mucosal biomechanics, including static, dynamic, volumetric and interactive responses, which are interpreted by its elasticity, viscosity/permeability, apparent Poisson's ratio and friction coefficient, respectively. Both empirical studies and numerical models are analysed and compared to gain anatomical and physiological insights. Furthermore, the clinical applications of such biomechanical knowledge on the mucosa are explored to address some critical concerns, including stimuli for tissue remodelling (interstitial hydrostatic pressure), pressure-pain thresholds, tissue displaceability and residual bone resorption. Through this review, the state of the art in mucosal biomechanics and their clinical implications are discussed for future research interests, including clinical applications, computational modelling, design optimization and prosthetic fabrication.
  2. Luo H, Li Q, Pramanik J, Luo J, Guo Z
    Histol. Histopathol., 2014 Oct;29(10):1287-93.
    PMID: 24515304
    Nanog is a potential stem cell marker and is considered a regeneration factor during tissue repair. In the present study, we investigated expression patterns of nanog in the rat heart after acute myocardial infarction by semi-quantitative RT-PCR, immunohistochemistry and Western blot analyses. Our results show that nanog at both mRNA and protein levels is positively expressed in myocardial cells, fibroblasts and small round cells in different myocardial zones at different stages after myocardial infarction, showing a spatio-temporal and dynamic change. After myocardial infarction, the nanog expression in fibroblasts and small round cells in the infarcted zone (IZ) is much stronger than that in the margin zone (MZ) and remote infarcted zone (RIZ). From day 7 after myocardial infarction, the fibroblasts and small cells strongly expressed nanog protein in the IZ, and a few myocardial cells in the MZ and the RIZ and the numbers of nanog-positive fibroblasts and small cells reached the highest peak at 21 days after myocardial infarction, but in this period the number of nanog-positive myocardial cells decreased gradually. At 28 days after myocardial infarction, the numbers of all nanog-positive cells decreased into a low level. Therefore, our data suggest that all myocardial cells, fibroblasts and small round cells are involved in myocardial reconstruction after cardiac infarction. The nanog-positive myocardial cells may respond to early myocardial repair, and the nanog-positive fibroblasts and small round cells are the main source for myocardial reconstruction after cardiac infarction.
  3. Navaratnam V, Mansor SM, Sit NW, Grace J, Li Q, Olliaro P
    Clin Pharmacokinet, 2000 Oct;39(4):255-70.
    PMID: 11069212
    Various compounds of the artemisinin family are currently used for the treatment of patients with malaria worldwide. They are characterised by a short half-life and feature the most rapidly acting antimalarial drugs to date. They are increasingly being used, often in combination with other drugs, although our knowledge of their main pharmacological features (including their absorption, distribution, metabolism and excretion) is still incomplete. Such data are particularly important in the case of combinations. Artemisinin derivatives are converted primarily, but to different extents, to the bioactive metabolite artenimol after either parenteral or gastrointestinal administration. The rate of conversion is lowest for artelinic acid (designed to protect the molecule against metabolism) and highest for the water-soluble artesunate. The absolute and relative bioavailability of these compounds has been established in animals, but not in humans, with the exception of artesunate. Oral bioavailability in animals ranges, approximately, between 19 and 35%. A first-pass effect is highly probably for all compounds when administered orally. Artemisinin compounds bind selectively to malaria-infected erythrocytes to yet unidentified targets. They also bind modestly to human plasma proteins, ranging from 43% for artenimol to 81.5% for artelinic acid. Their mode of action is still not completely understood, although different theories have been proposed. The lipid-soluble artemether and artemotil are released slowly when administered intramuscularly because of the 'depot' effect related to the oil formulation. Understanding the pharmacokinetic profile of these 2 drugs helps us to explain the characteristics of the toxicity and neurotoxicity. The water-soluble artesunate is rapidly converted to artenimol at rates that vary with the route of administration, but the processes need to be characterised further, including the relative contribution of pH and enzymes in tissues, blood and liver. This paper intends to summarise contemporary knowledge of the pharmacokinetics of this class of compounds and highlight areas that need further research.
  4. Ahmad R, Abu-Hassan MI, Li Q, Swain MV
    Clin Oral Implants Res, 2013 Nov;24(11):1273-9.
    PMID: 22862429 DOI: 10.1111/j.1600-0501.2012.02566.x
    The aim of this study was to evaluate a new method to quantify longitudinal mandibular bone remodeling three-dimensionally by superimposition of cone beam computed tomography images.
  5. Yang C, Li X, Li Q, Zhang B, Li H, Lin J
    Neuroreport, 2017 Dec 06;28(17):1180-1185.
    PMID: 28953094 DOI: 10.1097/WNR.0000000000000903
    Chicken embryos are used widely in the fields of developmental biology and neurobiology. The chicken embryo also serves as a model to analyze gene expression and function using in ovo electroporation. Plasmids may be injected into the spinal cord or tectum of the chicken central nervous system by microinjection for electroporation. Here, we developed a novel method that combines in ovo electroporation and neuronal culturing to study gene function in the chicken tectum during embryo development. Our method can be used to study in-vivo and in-vitro exogenous genes' function. In addition, live cell imaging microscopy, immunostaining, and transfection can be used with our method to study neuronal growth, development, neurite growth and retraction, and axonal pathfinding. Our result showed that axons were present in isolated neurons after culturing for 24 h, and cell debris was low after replacing the media at 48 h. Many GFP-expressing neurons were observed in the cultured cells after 48 h. We successfully cultured the neurons for 3 weeks. Together, this method combines in ovo electroporation and neuronal culturing advantages and is more convenient for the gene function analysis.
  6. Wang X, Utsumi M, Gao Y, Li Q, Tian X, Shimizu K, et al.
    Chemosphere, 2016 Mar;147:230-8.
    PMID: 26766360 DOI: 10.1016/j.chemosphere.2015.12.067
    Microcystins-LR (MC-LR) which is a kind of potent hepatotoxin for humans and wildlife can be biodegraded by microbial community. In this study, the capacity of biofilm in degrading MC-LR was investigated with and without additional metal ions (Mn(2+), Zn(2+) and Cu(2+)) at the concentration of 1 mg L(-1). The results indicated that the degradation rate of MC-LR by biofilm was inhibited by introduced Mn(2+) and Cu(2+) during the whole culture period. MC-LR cannot be degraded until a period of culture time passed both in the cases with Zn(2+) and Cu(2+) (2 and 8 days for Zn(2+) and Cu(2+), respectively). The results of mlrA gene analysis showed that the abundance of MC-LR degradation bacteria (MCLDB) in the microbial community under Mn(2+) condition was generally lower than that under no additional metal ion condition. Meanwhile, a two days lag phase for the proliferation of MCLDB occurred after introducing Zn(2+). And a dynamic change of MCLDB from Cu(2+) inhibited species to Cu(2+) promoted species was observed under Cu(2+) condition. The maximum ratio of MCLDB to overall bacteria under various conditions during culture process was found to follow the tendency as: Cu(2+) > Zn(2+) ≈ no additional metal ion (Control) > Mn(2+), suggesting the adverse effect of Mn(2+), no obvious effect of Zn(2+) and positive effect of Cu(2+) on the distribution ratio of MCLDB over the biofilm.
  7. Chen J, Ahmad R, Suenaga H, Li W, Swain M, Li Q
    J Biomech, 2015 Feb 5;48(3):512-9.
    PMID: 25560272 DOI: 10.1016/j.jbiomech.2014.11.043
    Although implant-retained overdenture allows edentulous patients to take higher occlusal forces than the conventional complete dentures, the biomechanical influences have not been explored yet. Clinically, there is limited knowledge and means for predicting localized bone remodelling after denture treatment with and without implant support. By using finite element (FE) analysis, this article provides an in-silico approach to exploring the treatment effects on the oral mucosa and potential resorption of residual ridge under three different denture configurations in a patient-specific manner. Based on cone beam computerized tomography (CBCT) scans, a 3D heterogeneous FE model was created; and the supportive tissue, mucosa, was characterized as a hyperelastic material. A measured occlusal load (63N) was applied onto three virtual models, namely complete denture, two and four implant-retained overdentures. Clinically, the bone resorption was measured after one year in the two implant-retained overdenture treatment. Despite the improved stability and enhanced masticatory function, the implant-retained overdentures demonstrated higher hydrostatic stress in mucosa (43.6kPa and 39.9kPa for two and four implants) at the posterior ends of the mandible due to the cantilever effect, than the complete denture (33.4kPa). Hydrostatic pressure in the mucosa signifies a critical indicator and can be correlated with clinically measured bone resorption, pointing to severer mandibular ridge resorption posteriorly with implant-retained overdentures. This study provides a biomechanical basis for denture treatment planning to improve long-term outcomes with minimal residual ridge resorption.
  8. Li Q, Wang Y, Zou YD, Liao XD, Liang JB, Xin W, et al.
    Sci. Total Environ., 2015 Sep 15;527-528:126-34.
    PMID: 25958362 DOI: 10.1016/j.scitotenv.2015.04.117
    The behavior of veterinary antibiotics in the soil is commonly studied using the following methods to add antibiotics to the soil: (A) adding manure collected from animals fed a diet that includes antibiotics; (B) adding antibiotic-free animal manure spiked with antibiotics; and (C) the direct addition of antibiotics. However, most studies have only used methods (B) and (C) in their research, and few studies have simultaneously compared the different antibiotic addition methods. This study used tylosin A (TYLA) as a model antibiotic to compare the effects of these three commonly used antibiotic addition methods on the dissipation rates of TYLA and the numbers of resistance genes in laboratory incubation experiments. The results showed that the three treatment methods produced similar TYLA degradation trends; however, there were significant differences (P<0.05) in the TYLA degradation half-life (t1/2) among the three methods. The half-life of TYLA degradation in treatments A, B and C was 2.44 ± 0.04, 1.21 ± 0.03 and 5.13 ± 0.11 days, respectively. The presence of manure resulted in a higher electrical conductivity (EC), higher relative abundance of Citrobacter amalonaticus, higher macrolide resistant gene (ermB, ermF and ermT) count and lower ecological toxicity in the soil, which could partially explain the higher TYLA degradation rate in the treatments containing manure. The higher degradation rate of TYLA in treatment B when compared to treatment A could be due to the lower concentrations of tylosin B (TYLB) and tylosin D (TYLD). The main route for veterinary antibiotics to enter the soil is via the manure of animals that have been administered antibiotics. Therefore, the more appropriate method to study the degradation and ecotoxicity of antibiotic residues in the soil is by using manure from animals fed/administered the particular antibiotic rather than by adding the antibiotic directly to the soil.
  9. Chen J, Ahmad R, Suenaga H, Li W, Sasaki K, Swain M, et al.
    PLoS ONE, 2015;10(7):e0132552.
    PMID: 26161878 DOI: 10.1371/journal.pone.0132552
    With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), to maximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalized modeling, computational optimization, and free-form fabrication enables more efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption.
  10. Yang C, Li X, Li Q, Li H, Qiao L, Guo Z, et al.
    J. Mol. Neurosci., 2018 Feb;64(2):287-299.
    PMID: 29285739 DOI: 10.1007/s12031-017-1019-5
    During nervous system development, neurons project axons over long distances to reach the appropriate targets for correct neural circuit formation. Sonic hedgehog (Shh) is a secreted protein and plays a key role in regulating vertebrate embryogenesis, especially in central nervous system (CNS) patterning, including neuronal migration and axonal projection in the brain and spinal cord. In the developing ventral midbrain, Shh is sufficient to specify a striped pattern of cell fates. Little is known about the molecular mechanisms underlying the Shh regulation of the neural precursor cell fate during the optic tectum development. Here, we aimed at studying how Shh might regulate chicken optic tectum patterning. In the present study, in ovo electroporation methods were employed to achieve the overexpression of Shh in the optic tectum during chicken embryo development. Besides, the study combined in ovo electroporation and neuron isolation culturing to study the function of Shh in vivo and in vitro. The fluorescent immunohistochemistry methods were used to check the related indicators. The results showed that Shh overexpression caused 87.8% of cells to be distributed to the stratum griseum central (SGC) layer, while only 39.3% of the GFP-transfected cells resided in the SGC layer in the control group. Shh overexpression also reduced the axon length in vivo and in vitro. In conclusion, we provide evidence that Shh regulates the neural precursor cell fate during chicken optic tectum development. Shh overexpression impairs neuronal migration and may affect the fate determination of transfected neurons.
  11. Tan T, Li Z, Liu H, Zanjani FG, Ouyang Q, Tang Y, et al.
    PMID: 30324036 DOI: 10.1109/JTEHM.2018.2865787
    Bronchoscopy inspection, as a follow-up procedure next to the radiological imaging, plays a key role in the diagnosis and treatment design for lung disease patients. When performing bronchoscopy, doctors have to make a decision immediately whether to perform a biopsy. Because biopsies may cause uncontrollable and life-threatening bleeding of the lung tissue, thus doctors need to be selective with biopsies. In this paper, to help doctors to be more selective on biopsies and provide a second opinion on diagnosis, we propose a computer-aided diagnosis (CAD) system for lung diseases, including cancers and tuberculosis (TB). Based on transfer learning (TL), we propose a novel TL method on the top of DenseNet: sequential fine-tuning (SFT). Compared with traditional fine-tuning (FT) methods, our method achieves the best performance. In a data set of recruited 81 normal cases, 76 TB cases and 277 lung cancer cases, SFT provided an overall accuracy of 82% while other traditional TL methods achieved an accuracy from 70% to 74%. The detection accuracy of SFT for cancers, TB, and normal cases are 87%, 54%, and 91%, respectively. This indicates that the CAD system has the potential to improve lung disease diagnosis accuracy in bronchoscopy and it may be used to be more selective with biopsies.
  12. Li P, Lei Y, Li Q, Lakshmipriya T, Gopinath SCB, Gong X
    J Anal Methods Chem, 2019;2019:6097375.
    PMID: 31534814 DOI: 10.1155/2019/6097375
    Every year, over 200 million adults are undergoing noncardiac surgery. These noncardiac surgery patients may face the risk of cardiac mortality and morbidity during the perioperative and recovery periods. Around ten million patients who underwent noncardiac surgery experience cardiac complications within the first 30 days of the postoperative period; the complications are myocardial infarction, cardiac death, and cardiac arrest. This cardiovascular risk is mostly faced by the patients having cerebrovascular or cardiac disease and the patients with the age greater than 50 years. Monitoring and treating cardiac diseases with a suitable biomarker during the perioperative period is necessary for the early recovery of noncardiac surgery patients. This review discussed the risk factors and the key guidelines to avoid the cardiovascular risks during the perioperative period of noncardiac surgery patients. In addition, the biomarkers and identification strategies for cardiac diseases are discussed.
  13. Waqas MY, Lisi H, Yang P, Ullah S, Zhang L, Zhang Q, et al.
    J Exp Zool A Ecol Genet Physiol, 2015 Nov;323(9):655-65.
    PMID: 26350585 DOI: 10.1002/jez.1957
    The oviduct is the location of fertilization and sperm storage. We examined the ultrastructure of the oviduct epithelium and its glandular secretions in the isthmus, uterus and vagina of Chinese soft-shelled turtle Pelodiscus sinensis using light and transmission electron microscopy. The epithelium in these segments is lined with ciliated, secretory and other cells; the first two cell types span the entire epithelium, with secretory cells being predominant. The ciliated cells are characterized by the presence of a secretory vacuole that releases apocrine secretions into the lumen, whereas the secretory cells contain typical biphasic granules with both dark and light aspects. The third type of cells observed have wider proximal portion, abundant mitochondria, vacuoles, and narrow nuclei. The storage of spermatozoa is restricted to the isthmus, uterus, and vagina. In addition, the gland cells show prominent features, including the presence of granules of different shapes, sizes, and electron densities. The synthesis of these granules is described for the first time in this study. Mitochondria appear to play an important role in the formation of dense granules, the rough endoplasmic reticulum and microfilaments may also play a role in the maturation of these dense granules. After completing the maturation process, these granules are released into the lumen of the gland cells.
  14. Liu L, Mo Z, Liang Z, Zhang Y, Li R, Ong KC, et al.
    BMC Med, 2015;13:226.
    PMID: 26381232 DOI: 10.1186/s12916-015-0448-7
    To investigate the long-term effects on immunity of an inactivated enterovirus 71 (EV71) vaccine and its protective efficacy.
  15. Luk ADW, Lee PP, Mao H, Chan KW, Chen XY, Chen TX, et al.
    Front Immunol, 2017;8:808.
    PMID: 28747913 DOI: 10.3389/fimmu.2017.00808
    BACKGROUND: Severe combined immunodeficiency (SCID) is fatal unless treated with hematopoietic stem cell transplant. Delay in diagnosis is common without newborn screening. Family history of infant death due to infection or known SCID (FH) has been associated with earlier diagnosis.

    OBJECTIVE: The aim of this study was to identify the clinical features that affect age at diagnosis (AD) and time to the diagnosis of SCID.

    METHODS: From 2005 to 2016, 147 SCID patients were referred to the Asian Primary Immunodeficiency Network. Patients with genetic diagnosis, age at presentation (AP), and AD were selected for study.

    RESULTS: A total of 88 different SCID gene mutations were identified in 94 patients, including 49 IL2RG mutations, 12 RAG1 mutations, 8 RAG2 mutations, 7 JAK3 mutations, 4 DCLRE1C mutations, 4 IL7R mutations, 2 RFXANK mutations, and 2 ADA mutations. A total of 29 mutations were previously unreported. Eighty-three of the 94 patients fulfilled the selection criteria. Their median AD was 4 months, and the time to diagnosis was 2 months. The commonest SCID was X-linked (n = 57). A total of 29 patients had a positive FH. Candidiasis (n = 27) and bacillus Calmette-Guérin (BCG) vaccine infection (n = 19) were the commonest infections. The median age for candidiasis and BCG infection documented were 3 months and 4 months, respectively. The median absolute lymphocyte count (ALC) was 1.05 × 10(9)/L with over 88% patients below 3 × 10(9)/L. Positive FH was associated with earlier AP by 1 month (p = 0.002) and diagnosis by 2 months (p = 0.008), but not shorter time to diagnosis (p = 0.494). Candidiasis was associated with later AD by 2 months (p = 0.008) and longer time to diagnosis by 0.55 months (p = 0.003). BCG infections were not associated with age or time to diagnosis.

    CONCLUSION: FH was useful to aid earlier diagnosis but was overlooked by clinicians and not by parents. Similarly, typical clinical features of SCID were not recognized by clinicians to shorten the time to diagnosis. We suggest that lymphocyte subset should be performed for any infant with one or more of the following four clinical features: FH, candidiasis, BCG infections, and ALC below 3 × 10(9)/L.

  16. Lawrenson K, Iversen ES, Tyrer J, Weber RP, Concannon P, Hazelett DJ, et al.
    Carcinogenesis, 2015 Nov;36(11):1341-53.
    PMID: 26424751 DOI: 10.1093/carcin/bgv138
    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene.
  17. Lawrenson K, Li Q, Kar S, Seo JH, Tyrer J, Spindler TJ, et al.
    Nat Commun, 2015 Sep 22;6:8234.
    PMID: 26391404 DOI: 10.1038/ncomms9234
    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10(-5)). For three cis-eQTL associations (P<1.4 × 10(-3), FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10(-10) for risk variants (P<10(-4)) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC.
  18. Kar SP, Tyrer JP, Li Q, Lawrenson K, Aben KK, Anton-Culver H, et al.
    Cancer Epidemiol. Biomarkers Prev., 2015 Oct;24(10):1574-84.
    PMID: 26209509 DOI: 10.1158/1055-9965.EPI-14-1270
    BACKGROUND: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations.

    METHODS: We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls).

    RESULTS: Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network.

    CONCLUSION: We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development.

    IMPACT: Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization.

  19. Kar SP, Beesley J, Amin Al Olama A, Michailidou K, Tyrer J, Kote-Jarai Z, et al.
    Cancer Discov, 2016 09;6(9):1052-67.
    PMID: 27432226 DOI: 10.1158/2159-8290.CD-15-1227
    Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis.

    SIGNIFICANCE: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932.

  20. Kuchenbaecker KB, Ramus SJ, Tyrer J, Lee A, Shen HC, Beesley J, et al.
    Nat. Genet., 2015 Feb;47(2):164-71.
    PMID: 25581431 DOI: 10.1038/ng.3185
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links