Displaying all 19 publications

  1. Su MH, Azwar E, Yang Y, Sonne C, Yek PNY, Liew RK, et al.
    J Hazard Mater, 2020 09 05;396:122610.
    PMID: 32298865 DOI: 10.1016/j.jhazmat.2020.122610
    This study examined an aquaponic approach of circulating water containing ammonia excretions from African catfish grown in an aquaculture tank for bacterial conversion into nitrates, which then acted as a nutrient substance to cultivate lettuce in hydroponic tank. We found that microwave pyrolysis biochar (450 g) having microporous (1.803 nm) and high BET surface area (419 m2/g) was suitable for use as biological carrier to grow nitrifying bacteria (63 g of biofilm mass) that treated the water quality through removing the ammonia (67%) and total suspended solids (68%), resulting in low concentration of remaining ammonia (0.42 mg/L) and total suspended solid (59.40 mg/L). It also increased the pH (6.8), converted the ammonia into nitrate (29.7 mg/L), and increased the nitrogen uptake by the lettuce (110 mg of nitrogen per plant), resulting in higher growth in lettuce (0.0562 %/day) while maintaining BOD5 level (3.94 mg/L) at acceptable level and 100% of catfish survival rate. Our results demonstrated that microwave pyrolysis biochar can be a promising solution for growing nitrifying bacteria in aquaponic system for simultaneous toxic ammonia remediation and generation of nitrate for growing vegetable in aquaculture industry.
  2. Yang Y, Liew RK, Tamothran AM, Foong SY, Yek PNY, Chia PW, et al.
    Environ Chem Lett, 2021 Jan 13.
    PMID: 33462541 DOI: 10.1007/s10311-020-01177-5
    Dwindling fossil fuels and improper waste management are major challenges in the context of increasing population and industrialization, calling for new waste-to-energy sources. For instance, refuse-derived fuels can be produced from transformation of municipal solid waste, which is forecasted to reach 2.6 billion metric tonnes in 2030. Gasification is a thermal-induced chemical reaction that produces gaseous fuel such as hydrogen and syngas. Here, we review refuse-derived fuel gasification with focus on practices in various countries, recent progress in gasification, gasification modelling and economic analysis. We found that some countries that replace coal by refuse-derived fuel reduce CO2 emission by 40%, and decrease the amount municipal solid waste being sent to landfill by more than 50%. The production cost of energy via refuse-derived fuel gasification is estimated at 0.05 USD/kWh. Co-gasification by using two feedstocks appears more beneficial over conventional gasification in terms of minimum tar formation and improved process efficiency.
  3. Yek PNY, Liew RK, Osman MS, Lee CL, Chuah JH, Park YK, et al.
    J Environ Manage, 2019 Apr 15;236:245-253.
    PMID: 30735943 DOI: 10.1016/j.jenvman.2019.01.010
    Microwave-steam activation (MSA), an innovative pyrolysis approach combining the use of microwave heating and steam activation, was investigated for its potential production of high grade activated carbon (AC) from waste palm shell (WPS) for methylene blue removal. MSA was performed via pyrolytic carbonization of WPS to produce biochar as the first step followed by steam activation of the biochar using microwave heating to form AC. Optimum yield and adsorption efficiency of methylene blue were obtained using response surface methodology involving several key process parameters. The resulting AC was characterized for its porous characteristics, surface morphology, proximate analysis and elemental compositions. MSA provided a high activation temperature above 500 °C with short process time of 15 min and rapid heating rate (≤150 °C/min). The results from optimization showed that one gram of AC produced from steam activation under 10 min of microwave heating at 550 °C can remove up to 38.5 mg of methylene blue. The AC showed a high and uniform surface porosity consisting high fixed carbon (73 wt%), micropore and BET surface area of 763.1 and 570.8 m2/g respectively, hence suggesting the great potential of MSA as a promising approach to produce high grade adsorbent for dye removal.
  4. Foong SY, Liew RK, Lee CL, Tan WP, Peng W, Sonne C, et al.
    J Hazard Mater, 2022 01 05;421:126774.
    PMID: 34364214 DOI: 10.1016/j.jhazmat.2021.126774
    Waste furniture boards (WFBs) contain hazardous formaldehyde and volatile organic compounds when left unmanaged or improperly disposed through landfilling and open burning. In this study, pyrolysis was examined as a disposal and recovery approach to convert three types of WFBs (i.e., particleboard, plywood, and fiberboard) into value-added chemicals using thermogravimetric analysis coupled with Fourier-transform infrared spectrometry (TG-FTIR) and pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS). TG-FTIR analysis shows that pyrolysis performed at an optimum temperature of 250-550 °C produced volatile products mainly consisting of carbon dioxide, carbon monoxide, and light hydrocarbons, such as methane. Py-GC/MS shows that pyrolysis at different final temperatures and heating rates recovered mainly phenols (25.9-54.7%) for potential use as additives in gasoline, colorants, and food. The calorific value of WFBs ranged from 16 to 18 MJ/kg but the WFBs showed high H/C (1.7-1.8) and O/C (0.8-1.0) ratios that provide low chemical energy during combustion. This result indicates that WFBs are not recommended to be burned directly as fuel, however, they can be pyrolyzed and converted into solid pyrolytic products such as biochar with improved properties for fuel application. Hazardous components, such as cyclopropylmethanol, were removed and converted into value-added compounds, such as 1,4:3,6-dianhydro-d-glucopyranose, for use in pharmaceuticals. These results show that the pyrolysis of WFBs at high temperature and low heating rate is a promising feature to produce value-added chemicals and reduce the formation of harmful chemical species. Thus, the release of hazardous formaldehyde and greenhouse gases into the environment is redirected.
  5. Nam WL, Phang XY, Su MH, Liew RK, Ma NL, Rosli MHNB, et al.
    Sci Total Environ, 2018 May 15;624:9-16.
    PMID: 29245037 DOI: 10.1016/j.scitotenv.2017.12.108
    Microwave vacuum pyrolysis of palm kernel shell (PKS) was performed to produce biochar, which was then tested as bio-fertilizer in growing Oyster mushroom (Pleurotus ostreatus). The pyrolysis approach produced biochar containing a highly porous structure with a high BET surface area of up to 270m2/g and low moisture content (≤10wt%), exhibiting desirable adsorption properties to be used as bio-fertilizer since it can act as a housing that provides many sites on which living microorganisms (mycelium or plant-growth promoting bacteria) and organic nutrients can be attached or adsorbed onto. This could in turn stimulate plant growth by increasing the availability and supply of nutrients to the targeted host plant. The results from growing Oyster mushroom using the biochar recorded an impressive growth rate and a monthly production of up to about 550g of mushroom. A shorter time for mycelium growth on one whole baglog (21days) and the highest yield of Oyster mushroom (550g) were obtained from cultivation medium added with 20g of biochar. Our results demonstrate that the biochar-based bio-fertilizer produced from microwave vacuum pyrolysis of PKS shows exceptional promise as growth promoting material for mushroom cultivation.
  6. Nauman Mahamood M, Zhu S, Noman A, Mahmood A, Ashraf S, Aqeel M, et al.
    Environ Pollut, 2023 Feb 15;319:120979.
    PMID: 36586554 DOI: 10.1016/j.envpol.2022.120979
    Soil heavy metal contamination is increasing rapidly due to increased anthropogenic activities. Lead (Pb) is a well-known human carcinogen causing toxic effects on humans and the environment. Its accumulation in food crops is a serious hazard to food security. Developing environment-friendly and cost-efficient techniques is necessary for Pb immobilization in the soil. A pot experiment was executed to determine the role of biochar (BC), zero-valent iron nanoparticles (n-ZVI), and zero-valent iron nanoparticles biochar composite (n-ZVI-BC) in controlling the Pb mobility and bioaccumulation in wheat (Triticum aestivum L.). The results showed that BC and n-ZVI significantly enhanced the wheat growth by increasing their photosynthetic and enzymatic activities. Among all the applied treatments, the maximum significant (p ≤ 0.05) improvement in wheat biomass was with the n-ZVI-BC application (T3). Compared to the control, the biomass of wheat roots, shoots & grains increased by 92.5, 58.8, and 49.1%, respectively. Moreover, the soil addition of T3 amendment minimized the Pb distribution in wheat roots, shoots, and grains by 33.8, 26.8, and 16.2%, respectively. The outcomes of this experiment showed that in comparison to control treatment plants, soil amendment with n-ZVI-BC (T3) increased the catalase (CAT), superoxide dismutase (SOD) activity by 49.8 and 31.1%, respectively, ultimately declining electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) content in wheat by 38.7, 33.3, and 38%respectively. In addition, applied amendments declined the Pb mobility in the soil by increasing the residual Pb fractions. Soil amendment with n-ZVI-BC also increased the soil catalase (CAT), urease (UR), and acid phosphatase (ACP) activities by 68, 59, and 74%, respectively. Our research results provided valuable insight for the remediation of Pb toxicity in wheat. Hence, we can infer from our findings that n-ZVI-BC can be considered a propitious, environment friendly and affordable technique for mitigating Pb toxicity in wheat crop and reclamation of Pb polluted soils.
  7. Foong SY, Cheong KY, Kong SH, Yiin CL, Yek PNY, Safdar R, et al.
    Bioresour Technol, 2023 Nov;387:129592.
    PMID: 37549710 DOI: 10.1016/j.biortech.2023.129592
    Over the past few decades, extensive research has been conducted to develop cost-effective and high-quality biochar for environmental biodegradation purposes. Pyrolysis has emerged as a promising method for recovering biochar from biomass and waste materials. This study provides an overview of the current state-of-the-art biochar production technology, including the advancements and biochar applications in organic pollutants remediation, particularly wastewater treatment. Substantial progress has been made in biochar production through advanced thermochemical technologies. Moreover, the review underscores the importance of understanding the kinetics of pollutant degradation using biochar to maximize its synergies for potential environmental biodegradation. Finally, the study identifies the technological gaps and outlines future research advancements in biochar production and its applications for environmental biodegradation.
  8. Lam SS, Yek PNY, Ok YS, Chong CC, Liew RK, Tsang DCW, et al.
    J Hazard Mater, 2020 05 15;390:121649.
    PMID: 31753673 DOI: 10.1016/j.jhazmat.2019.121649
    Improving the sustainability and cost-effectiveness of biochar production is crucial to meet increased global market demand. Here, we developed a single-step microwave steam activation (STMSA) as a simplified yet efficient method to produce microwave activated biochar (MAB) from waste palm shell (WPS). The STMSA recorded a higher heating rate (70 °C/min) and higher conversion (45 wt%) of WPS into highly microporous MAB (micropore surface area of 679.22 m2/g) in contrast with the conventional heating approach (≤ 12-17 wt%). The MAB was then applied as biosorbent for hazardous landfill leachate (LL) treatment and the adsorption performance was compared with commercial activated carbon under different pH, adsorbent quantity, adsorbate concentrations, and contact times. The MAB demonstrated high adsorption capacity, achieving maximum adsorption efficiency at 595 mg/g and 65 % removal of chemical oxygen demand (COD) with 0.4 g/L of adsorbent amount under optimal acidic conditions (pH ≈ 2-3) after 24 h of contact time. The Freundlich isotherm and pseudo second-order kinetic models were well-fitted to explain the equilibrium adsorption and kinetics. The results indicate the viability of STMSA as a fast and efficient approach to produce activated biochar as a biosorbent for the treatment of hazardous landfill leachate.
  9. Yek PNY, Peng W, Wong CC, Liew RK, Ho YL, Wan Mahari WA, et al.
    J Hazard Mater, 2020 08 05;395:122636.
    PMID: 32298946 DOI: 10.1016/j.jhazmat.2020.122636
    We developed an innovative single-step pyrolysis approach that combines microwave heating and activation by CO2 or steam to transform orange peel waste (OPW) into microwave activated biochar (MAB). This involves carbonization and activation simultaneously under an inert environment. Using CO2 demonstrates dual functions in this approach, acting as purging gas to provide an inert environment for pyrolysis while activating highly porous MAB. This approach demonstrates rapid heating rate (15-120 °C/min), higher temperature (> 800 °C) and shorter process time (15 min) compared to conventional method using furnace (> 1 h). The MAB shows higher mass yield (31-44 wt %), high content of fixed carbon (58.6-61.2 wt %), Brunauer Emmett Teller (BET) surface area (158.5-305.1 m2/g), low ratio of H/C (0.3) and O/C (0.2). Activation with CO2 produces more micropores than using steam that generates more mesopores. Steam-activated MAB records a higher adsorption efficiency (136 mg/g) compared to CO2 activation (91 mg/g), achieving 89-93 % removal of Congo Red dye. The microwave pyrolysis coupled with steam or CO2 activation thereby represents a promising approach to transform fruit-peel waste to microwave-activated biochar that remove hazardous dye.
  10. Nguyen DTC, Le HTN, Nguyen TT, Nguyen TTT, Liew RK, Bach LG, et al.
    Sci Total Environ, 2021 Nov 25;797:149195.
    PMID: 34346381 DOI: 10.1016/j.scitotenv.2021.149195
    Asteraceae presents one of the most globally prevalent, cultivated, and fundamental plant families. However, a large amount of agricultural wastes has been yearly released from Asteraceae crops, causing adverse impacts on the environment. The objective of this work is to have insights into their biomass potentials and technical possibility of conversion into biochars. Physicochemical properties are systematically articulated to orientate environmental application, soil amendment, and other utilizations. Utilizations of Asteraceae biochars in wastewater treatment can be categorized by heavy metal ions, organic dyes, antibiotics, persistent organic pollutants (POPs), and explosive compounds. Some efforts were made to analyze the production cost, as well as the challenges and prospects of Asteraceae-based biochars.
  11. Liew RK, Azwar E, Yek PNY, Lim XY, Cheng CK, Ng JH, et al.
    Bioresour Technol, 2018 Oct;266:1-10.
    PMID: 29936405 DOI: 10.1016/j.biortech.2018.06.051
    A micro-mesoporous activated carbon (AC) was produced via an innovative approach combining microwave pyrolysis and chemical activation using NaOH/KOH mixture. The pyrolysis was examined over different chemical impregnation ratio, microwave power, microwave irradiation time and types of activating agents for the yield, chemical composition, and porous characteristic of the AC obtained. The AC was then tested for its feasibility as textile dye adsorbent. About 29 wt% yield of AC was obtained from the banana peel with low ash and moisture (<5 wt%), and showed a micro-mesoporous structure with high BET surface area (≤1038 m2/g) and pore volume (≤0.80 cm3/g), indicating that it can be utilized as adsorbent to remove dye. Up to 90% adsorption of malachite green dye was achieved by the AC. Our results indicate that the microwave-activation approach represents a promising attempt to produce good quality AC for dye adsorption.
  12. Yek PNY, Wan Mahari WA, Kong SH, Foong SY, Peng W, Ting H, et al.
    Bioresour Technol, 2022 Mar;347:126687.
    PMID: 35007740 DOI: 10.1016/j.biortech.2022.126687
    Thermal co-processing of lignocellulosic and aquatic biomass, such as algae and shellfish waste, has shown synergistic effects in producing value-added energy products with higher process efficiency than the traditional method, highlighting the importance of scaling up to pilot-scale operations. This article discusses the design and operation of pilot-scale reactors for torrefaction, pyrolysis, and gasification, as well as the key parameters of co-processing biomass into targeted and improved quality products for use as fuel, agricultural application, and environmental remediation. Techno-economic analysis reveals that end product selling price, market dynamics, government policies, and biomass cost are crucial factors influencing the sustainability of thermal co-processing as a feasible approach to utilize the biomass. Because of its simplicity, pyrolysis allows greater energy recovery, while gasification has the highest net present value (profitability). Integration of liquefaction, hydrothermal, and fermentation pre-treatment technology has the potential to increase energy efficiency while reducing process residues.
  13. Lam SS, Liew RK, Cheng CK, Rasit N, Ooi CK, Ma NL, et al.
    J Environ Manage, 2018 May 01;213:400-408.
    PMID: 29505995 DOI: 10.1016/j.jenvman.2018.02.092
    Fruit peel, an abundant waste, represents a potential bio-resource to be converted into useful materials instead of being dumped in landfill sites. Palm oil mill effluent (POME) is a harmful waste that should also be treated before it can safely be released to the environment. In this study, pyrolysis of banana and orange peels was performed under different temperatures to produce biochar that was then examined as adsorbent in POME treatment. The pyrolysis generated 30.7-47.7 wt% yield of a dark biochar over a temperature ranging between 400 and 500 °C. The biochar contained no sulphur and possessed a hard texture, low volatile content (≤34 wt%), and high amounts of fixed carbon (≥72 wt%), showing durability in terms of high resistance to chemical reactions such as oxidation. The biochar showed a surface area of 105 m2/g and a porous structure containing mesopores, indicating its potential to provide many adsorption sites for use as an adsorbent. The use of the biochar as adsorbent to treat the POME showed a removal efficiency of up to 57% in reducing the concentration of biochemical oxygen demand (BOD), chemical oxygen demand COD, total suspended solid (TSS) and oil and grease (O&G) of POME to an acceptable level below the discharge standard. Our results indicate that pyrolysis shows promise as a technique to transform banana and orange peel into value-added biochar for use as adsorbent to treat POME. The recovery of biochar from fruit waste also shows advantage over traditional landfill approaches in disposing this waste.
  14. Djandja OS, Liew RK, Liu C, Liang J, Yuan H, He W, et al.
    Sci Total Environ, 2023 May 15;873:162119.
    PMID: 36773913 DOI: 10.1016/j.scitotenv.2023.162119
    Hydrothermal carbonization has gained attention in converting wet organic solid waste into hydrochar with many applications such as solid fuel, energy storage material precursor, fertilizer or soil conditioner. Recently, various catalysts such as organic and inorganic catalysts are employed to guide the properties of the hydrochar. This review presents a summarize and a critical discussion on types of catalysts, process parameters and catalytic mechanisms. The catalytic impact of carboxylic acids is related to their acidity level and the number of carboxylic groups. The catalysis level with strong mineral acids is likely related to the number of hydronium ions liberated from their hydrolysis. The impact of inorganic salts is determined by the Lewis acidity of the cation. The metallic ions in metallic salts may incorporate into the hydrochar and increase the ash of the hydrochar. The selection of catalysts for various applications of hydrochars and the environmental and the techno-economic aspects of the process are also presented. Although some catalysts might enhance the characteristics of hydrochar for various applications, these catalysts may also result in considerable carbon loss, particularly in the case of organic acid catalysts, which may potentially ruin the overall advantage of the process. Overall, depending on the expected application of the hydrochar, the type of catalyst and the amount of catalyst loading requires careful consideration. Some recommendations are made for future investigations to improve laboratory-scale process comprehension and understanding of pathways as well as to encourage widespread industrial adoption.
  15. Azwar E, Mahari WAW, Liew RK, Ramlee MZ, Verma M, Chong WWF, et al.
    Sci Total Environ, 2023 Mar 08;876:162673.
    PMID: 36894104 DOI: 10.1016/j.scitotenv.2023.162673
    Fast growing Kariba weed causes major problems and pollution on freshwater and shellfish aquaculture systems by interfering with nutrient uptake of crops, restricting sunlight penetration, and decreasing water quality due to massive biomass of Kariba weed remnants. Solvothermal liquefaction is considered an emerging thermochemical technique to convert waste into high yield of value-added products. Solvothermal liquefaction (STL) of Kariba weed as an emerging contaminant was performed to investigate the effects of different types of solvents (ethanol and methanol) and Kariba weed mass loadings (2.5-10 % w/v) on treating and reducing the weed via conversion into potentially useful crude oil product and char. Up to 92.53 % of Kariba weed has been reduced via this technique. The optimal conditions for crude oil production were found to be at 5 % w/v of mass loading in methanol medium, resulting in a high heating value (HHV) of 34.66 MJ/kg and yield of 20.86 wt%, whereas the biochar production was found to be optimum at 7.5 % w/v of mass loading in methanol medium, resulting in 29.92 MJ/kg of HHV and 25.38 wt% of yield. The crude oil consisted of beneficial chemical compounds for biofuel production such as hexadecanoic acid, methyl ester (65.02 peak area %) and the biochar showed high carbon content (72.83 %). In conclusion, STL as a remediation for emerging Kariba weed is a feasible process for shellfish aquaculture waste treatment and biofuels production.
  16. Yang Y, Zhang Z, Zhang L, Song F, Ren Y, Zhang X, et al.
    Sci Total Environ, 2023 Aug 01;884:163741.
    PMID: 37120025 DOI: 10.1016/j.scitotenv.2023.163741
    Wood-based panels provide efficient alternatives to materials such as plastics derived from traditional petroleum sources and thereby help to mitigate greenhouse gas emissions. Unfortunately, using indoor manufactured panel products also results in significant emissions of volatile organic compounds including olefins, aromatic and ester compounds, which negatively affect human health. This paper highlights recent developments and notable achievements in the field of indoor hazardous air treatment technologies to guide future research toward environmentally friendly and economically feasible directions that may have a significant impact on the improvement of human settlements. Summarizing and synthesizing the principles, advantages, and limitations of different technologies can assist policymakers and engineers in identifying the most appropriate technology for a particular air pollution control program based on criteria such as cost-effectiveness, efficiency, and environmental impact. In addition, insights into the development of indoor air pollution control technologies are provided and potential areas for innovation, improvement of existing technologies, and development of new technologies are identified. Finally, the authors also hope that this sub-paper will raise public awareness of indoor air pollution issues and promote a better understanding of the importance of indoor air pollution control technologies for public health, environmental protection, and sustainable development.
  17. Low EJ, Yusoff HM, Batar N, Nor Azmi INZ, Chia PW, Lam SS, et al.
    Environ Sci Pollut Res Int, 2023 Jul;30(31):76297-76307.
    PMID: 37246180 DOI: 10.1007/s11356-023-27823-3
    Corrosion inhibitors have offered new opportunities to bring positive impacts on our society, especially when it has helped in protecting metals against corrosion in an aqueous solution. Unfortunately, the commonly known corrosion inhibitors used to protect metals or alloys against corrosion are invariably related to one or more drawbacks such as the employment of hazardous anti-corrosion agents, leakage of anti-corrosion agents in aqueous solution, and high solubility of anti-corrosion agents in water. Over the years, using food additives as anti-corrosion agents have drawn interest as it offers biocompatibility, less toxic, and promising applications. In general, food additives are considered safe for human consumption worldwide, and it was rigorously tested and approved by the US Food and Drug Administration. Nowadays, researchers are more interested in innovating and using green, less toxic, and economical corrosion inhibitors in metal and alloy protection. As such, we have reviewed the use of food additives to protect metals and alloys against corrosion. The current review is significant and differs from the previous review articles made on corrosion inhibitors, in which the new role of food additives is highlighted as green and environmental-friendly substances in the protection of metals and alloys against corrosion. It is anticipated that the next generation will be utilizing non-toxic and sustainable anti-corrosion agents, in which food additives might be the potential to fulfill the green chemistry goals.
  18. Wan Mahari WA, Peng W, Nam WL, Yang H, Lee XY, Lee YK, et al.
    J Hazard Mater, 2020 12 05;400:123156.
    PMID: 32574879 DOI: 10.1016/j.jhazmat.2020.123156
    A review of valorization of oyster mushroom species and waste generated in the mushroom cultivation is presented, with a focus on the cultivation and valorization techniques, conditions, current research status and particularly the hazard mitigation and value-added recovery of the waste mushroom substrate (WMS) - an abundant waste in mushroom cultivation industry. Based on the studies reviewed, the production rate of the present mushroom industry is inadequate to meet market demands. There is a need for the development of new mushroom cultivation methods that can guarantee an increase in mushroom productivity and quality (nutritional and medicinal properties). This review shows that the cylindrical baglog cultivation method is more advantageous compared with the wood tray cultivation method to improve the mushroom yield and cost efficiency. Approximately 5 kg of potentially hazardous WMS (spreading diseases in mushroom farm) is generated for production of 1 kg of mushroom. This encourages various valorization of WMS for use in agricultural and energy conversion applications, mainly as biocompost, plant growing media, and bioenergy. The use of WMS as biofertilizer has shown desirable performance compared to conventional chemical fertilizer, whilst the use of WMS as energy feedstock could produce cleaner bioenergy sources compared to conventional fuels.
  19. Wan Mahari WA, Nam WL, Sonne C, Peng W, Phang XY, Liew RK, et al.
    Bioresour Technol, 2020 Sep;312:123572.
    PMID: 32470829 DOI: 10.1016/j.biortech.2020.123572
    Microwave vacuum pyrolysis of palm kernel shell was examined to produce engineered biochar for application as additive in agriculture application. The pyrolysis approach, performed at 750 W of microwave power, produced higher yield of porous biochar (28 wt%) with high surface area (270 cm2/g) compared to the yield obtained by conventional approach (<23 wt%). Addition of the porous biochar in mushroom substrate showed increased moisture content (99%) compared to the substrate without biochar (96%). The mushroom substrate added with biochar (150 g) was optimal in shortening formation, growth, and full colonization of the mycelium within one month. Using 2.5% of the biochar in mushroom substrate desirably maintained the optimum pH level (6.8-7) during the mycelium colonization period, leading to high mycelium growth (up to 91%) and mushroom yield (up to 280 g). The engineered biochar shows great potential as moisture retention and neutralizing agent in mushroom cultivation.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links