Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Lim SJ, Oslan SN
    PeerJ, 2021;9:e11315.
    PMID: 34046253 DOI: 10.7717/peerj.11315
    Background: -amylases catalyze the endo-hydrolysis of -1,4-D-glycosidic bonds in starch into smaller moieties. While industrial processes are usually performed at harsh conditions, -amylases from mainly the bacteria, fungi and yeasts are preferred for their stabilities (thermal, pH and oxidative) and specificities (substrate and product). Microbial -amylases can be purified and characterized for industrial applications. While exploring novel enzymes with these properties in the nature is time-costly, the advancements in protein engineering techniques including rational design, directed evolution and others have privileged their modifications to exhibit industrially ideal traits. However, the commentary on the strategies and preferably mutated residues are lacking, hindering the design of new mutants especially for enhanced substrate specificity and oxidative stability. Thus, our review ensures wider accessibility of the previously reported experimental findings to facilitate the future engineering work.

    Survey methodology and objectives: A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries.

    Conclusions: Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.

  2. Ling JWA, Chang LS, Babji AS, Lim SJ
    J Sci Food Agric, 2020 Oct;100(13):4714-4722.
    PMID: 32468613 DOI: 10.1002/jsfa.10530
    BACKGROUND: Processing of edible bird's nest (EBN) requires extensive washing to remove impurities and produces huge amounts of EBN co-products, which contain mainly feathers with glycoproteins attached, which are usually discarded. This study was conducted to recover the valuable EBN glycoproteins from the waste material. Enzymatic hydrolysis was applied to recover EBN glycopeptides from EBN co-products (EBNcoP ) and processed cleaned EBN (EBNclean ) was used as control, which were then freeze-dried into EBN hydrolysates (EBNhcoP and EBNhclean , respectively).

    RESULTS: The recovery yield for EBNhclean and EBNhcoP were 89.09 ± 0.01% and 47.64 ± 0.26%, respectively, indicating nearly 50% of glycopeptide can be recovered from the waste material. Meanwhile, N-acetylneuraminic acid, a major acid sugar in EBN glycoproteins, of EBNhcoP increased by 229% from 58.6 ± 3.9 to 192.9 ± 3.1 g kg-1 , indicating the enzymatic hydrolysis removed impurities and thus enhanced the N-acetylneuraminic acid content. Total soluble protein was more than 330 g kg-1 for all the samples. Colour parameter showed that hydrolysate samples have greater L* (lightness) values. Chroma result indicates the intensity of all the samples were low (

  3. Lim L, Lim SJ, Loy JS, Ng DC
    BMJ Case Rep, 2021 Sep 16;14(9).
    PMID: 34531241 DOI: 10.1136/bcr-2021-246066
    We report a pair of siblings who developed multisystem inflammatory syndrome in children (MIS-C) in close temporal proximity after recent exposure to SARS-CoV-2. Both siblings presented with Kawasaki disease-like features and haemodynamic instability, with the onset of symptoms within 6 days of each other. Remarkably, one of the siblings was the elder of a pair of monozygotic twins. The younger monozygotic twin, however, did not develop MIS-C.
  4. Oslan SNH, Yusof NY, Lim SJ, Ahmad NH
    J Microbiol Methods, 2024 Apr;219:106897.
    PMID: 38342249 DOI: 10.1016/j.mimet.2024.106897
    Salmonella is as an intracellular bacterium, causing many human fatalities when the host-specific serotypes reach the host gastrointestinal tract. Nontyphoidal Salmonella are responsible for numerous foodborne outbreaks and product recalls worldwide whereas typhoidal Salmonella are responsible for Typhoid fever cases in developing countries. Yet, Salmonella-related foodborne disease outbreaks through its food and water contaminations have urged the advancement of rapid and sensitive Salmonella-detecting methods for public health protection. While conventional detection methods are time-consuming and ineffective for monitoring foodstuffs with short shelf lives, advances in microbiology, molecular biology and biosensor methods have hastened the detection. Here, the review discusses Salmonella pathogenic mechanisms and its detection technology advancements (fundamental concepts, features, implementations, efficiency, benefits, limitations and prospects). The time-efficiency of each rapid test method is discussed in relation to their limit of detections (LODs) and time required from sample enrichment to final data analysis. Importantly, the matrix effects (LODs and sample enrichments) were compared within the methods to potentially speculate Salmonella detection from environmental, clinical or food matrices using certain techniques. Although biotechnological advancements have led to various time-efficient Salmonella-detecting techniques, one should consider the usage of sophisticated equipment to run the analysis by moderately to highly trained personnel. Ultimately, a fast, accurate Salmonella screening that is readily executed by untrained personnels from various matrices, is desired for public health procurement.
  5. Goh KT, Ng SK, Chan YC, Lim SJ, Chua EC
    PMID: 3433161
    A nation-wide outbreak of 260 cases of DF/DHF with 1 death occurred in Singapore from Apr-Sept 1986. The outbreak originated from 3 separate foci of transmission at the western, south-eastern and north-eastern parts of the island and then spread to other dengue receptive urban and suburban areas. The morbidity rate was highest in young male Chinese adults between 15 and 24 years of age. The outbreak was rapidly brought under control through destruction of adult Aedes mosquitoes, surveys and source reduction of larval breeding habitats, health education and to a certain extent law enforcement. The Aedes population was high in the main foci of transmission although the overall house index was only 1.1. Other factors which could have precipitated the outbreak included waning herd immunity of the human population and continuous introduction of dengue virus into the country.
  6. Hui Yan T, Lim SJ, Babji AS, Rawi MH, Sarbini SR
    Int J Biol Macromol, 2021 Apr 01;175:422-431.
    PMID: 33561458 DOI: 10.1016/j.ijbiomac.2021.02.007
    Bioactive edible swiftlet's nest (ESN) sialylated-mucin (SiaMuc) hydrolysate is produced by alcalase hydrolysis. Enzymatic hydrolysis of ESN breakdown high-valued ESN SiaMuc-glycoprotein into bioactive SiaMuc-glycopeptide. This is a breakthrough for the issue of insolubility and low extraction rate in ESN, and even increases the bioavailability of ESN nutritional functionality and health benefits. Hydrolysis of ESN SiaMuc-glycoprotein was performed for 1 to 4 h and its effect on physicochemical properties, molecular weight (MW) distribution, SiaMuc-glycoprotein and glycopeptide integrity were determined. Other than improvement in solubility and bioavailability as SiaMuc-glycopeptide, results from SDS-PAGE revealed that MW of SiaMuc-glycoprotein decreased from 42.0-148.8 kDa to 17.7-142.7 kDa with increasing hydrolysis period. Further hydrolysis from maximized DH (90 min) showed an insignificant effect on the MW of ESN SiaMuc-glycopeptide and remained constant at 15.2 kDa. This highlights that enzymatic hydrolysis only influences macro SiaMuc-glycoprotein fractions (142.7, 115.3 and 102.7 kDa), while the majority of SiaMuc-glycopeptide fractions from 36.6-98.6 kDa remained intact. Conclusively, alcalase hydrolysis of ESN showed high recovery in the form of bioactive ESN SiaMuc-glycopeptide. Therefore, enzymatic biotechnology is an economic alternative applicable on ESN that broaden industrial utilization by reducing the MW without destroying the quality of bioactive SiaMuc-glycoprotein.
  7. Lim SJ, Mustapha WAW, Maskat MY, Latip J, Badri KH, Hassan O
    Food Sci Biotechnol, 2016;25(Suppl 1):23-29.
    PMID: 30263482 DOI: 10.1007/s10068-016-0094-7
    Fucoidan is a sulfated polysaccharide that consists mainly of fucose and is found in brown seaweeds. In this study, fucoidan was extracted from Sargassum binderi (Fsar) from Malaysia and subsequently characterized in terms of composition, structure and toxicology. It was found that the molecular weight, polydispersity index, monosaccharide profile and degree of sulfation of Fsar differed from those of commercial food-grade fucoidan (Fysk). NMR analysis suggested that the main structure of Fsar was →3)fuc-2-OSO3-(1→3)fuc-2-OSO3-(1→. A cytotoxicity study employing up to 200 mg/mL Sargassum binderi extract showed that cell inhibition was less than 50% (IC50), while acute toxicity results classified S. binderi as category 5 (unclassified) according to the OECD Guideline 423, as no mortality was observed at the highest dosage (2,000 mg/kg). Both toxicity results showed that this material is safe to be consumed. The chemical characteristics and non-toxicity of Fsar demonstrate its potential in biological and food product applications.
  8. Jalalonmuhali M, Caroll R, Deayton S, Emery T, Humphreys I, Lim SJ, et al.
    Hum Immunol, 2020 Dec;81(12):679-684.
    PMID: 32736900 DOI: 10.1016/j.humimm.2020.07.005
    BACKGROUND: Angiotensin II type 1 receptor antibody (AT1R-Ab) is a non-HLA antibody that has been reported to cause antibody-mediated rejection and graft loss in kidney transplantation. The prevalence of positive AT1R-Ab varies between 8% and 18% in different regions. Thus, this study aims to determine the prevalence of AT1R-Ab among the Malaysian population.

    METHODOLOGY: All sera for AT1R-Ab were collected at the University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia. The sera were centrifuged and kept refrigerated at -80 °C before being transported to the South Australian Transplantation and Immunogenetics Laboratory (SATIS). Enzyme-linked immunosorbent assay kit (One Lambda) was used for the detection of AT1R-Ab, and it was performed according to the manufacturer's instructions. The level of >17.1 U/mL was considered to be AT1R-Ab positive; 10.0-17.1 U/mL at risk, and <10.0 U/mL negative.

    RESULTS: A total of 115 samples were collected from 99 patients pre and post-kidney transplant recipients. From the pre-transplant sera (n = 68) 17.7% were positive, 35.3% were at risk and 47.0% were negative. The positive AT1R-Ab cohort were relatively younger, with a mean age of 34.7 ± 8.3 years old and statistically significant, with a p-value of 0.028. Among the sera that were tested positive, 19.0% were from the Chinese ethnicity, 6.7% from Malay and 16.7% from Indian. There was no difference in the rejection episodes, persistent or de novo HLA-DSA, and graft function between the group (AT1R-Ab negative vs AT1R-Ab at risk and positive) and the results were consistent in a model adjusted for all potential confounders.

    CONCLUSION: The prevalence of positive (>17.1 U/mL) pre-transplant AT1R-Ab was 17.7% and 35.3% were at risk (10.0-17.1 U/mL) in our pre-transplant cohort.

  9. Shahid M, Azfaralariff A, Law D, Najm AA, Sanusi SA, Lim SJ, et al.
    Sci Rep, 2021 01 15;11(1):1594.
    PMID: 33452398 DOI: 10.1038/s41598-021-81026-9
    Xanthorrhizol (XNT), is a bioactive compound found in Curcuma xanthorrhiza Roxb. This study aimed to determine the potential targets of the XNT via computational target fishing method. This compound obeyed Lipinski's and Veber's rules where it has a molecular weight (MW) of 218.37 gmol-1, TPSA of 20.23, rotatable bonds (RBN) of 4, hydrogen acceptor and donor ability is 1 respectively. Besides, it also has half-life (HL) values 3.5 h, drug-likeness (DL) value of 0.07, oral bioavailability (OB) of 32.10, and blood-brain barrier permeability (BBB) value of 1.64 indicating its potential as therapeutic drug. Further, 20 potential targets were screened out through PharmMapper and DRAR-CPI servers. Co-expression results derived from GeneMANIA revealed that these targets made connection with a total of 40 genes and have 744 different links. Four genes which were RXRA, RBP4, HSD11B1 and AKR1C1 showed remarkable co-expression and predominantly involved in steroid metabolic process. Furthermore, among these 20 genes, 13 highly expressed genes associated with xenobiotics by cytochrome P450, chemical carcinogenesis and steroid metabolic pathways were identified through gene ontology (GO) and KEGG pathway analysis. In conclusion, XNT is targeting multiple proteins and pathways which may be exploited to shape a network that exerts systematic pharmacological effects.
  10. Ling AJW, Chang LS, Babji AS, Latip J, Koketsu M, Lim SJ
    Food Chem, 2022 Jan 15;367:130755.
    PMID: 34390910 DOI: 10.1016/j.foodchem.2021.130755
    Sialic acids are a group of nine-carbon α-keto acids. Sialic acid exists in more than 50 forms, with the natural types discovered as N-acetylneuraminic acid (Neu5Ac), deaminoneuraminic acid (2-keto-3-deoxy-nonulononic acid or Kdn), and N-glycolylneuraminic acid (Neu5Gc). Sialic acid level varies depending on the source, where edible bird's nest (EBN), predominantly Neu5Ac, is among the major sources of sialic acid. Due to its high nutritive value and complexity, sialic acid has been studied extensively through acid, aqueous, and enzymatic extraction. Although detection by chromatographic methods or mass spectrometry is common, the isolation and recovery work remained limited. Sialic acid is well-recognised for its bioactivities, including brain and cognition development, immune-enhancing, anti-hypertensive, anticancer, and skin whitening properties. Therefore, sialic acid can be used as a functional ingredient in the various industries. This paper reviews the current trend in the biochemistry, sources, extraction, and functions of sialic acids with special reference to EBN.
  11. Ho CW, Lazim AM, Fazry S, Zaki UKHH, Lim SJ
    Food Chem, 2017 Apr 15;221:1621-1630.
    PMID: 27979138 DOI: 10.1016/j.foodchem.2016.10.128
    Vinegars are liquid products produced from the alcoholic and subsequent acetous fermentation of carbohydrate sources. They have been used as remedies in many cultures and have been reported to provide beneficial health effects when consumed regularly. Such benefits are due to various types of polyphenols, micronutrients and other bioactive compounds found in vinegars that contribute to their pharmacological effects, among them, antimicrobial, antidiabetic, antioxidative, antiobesity and antihypertensive effects. There are many types of vinegars worldwide, including black vinegar, rice vinegar, balsamic vinegar and white wine vinegar. All these vinegars are produced using different raw materials, yeast strains and fermentation procedures, thus giving them their own unique tastes and flavours. The main volatile compound in vinegar is acetic acid, which gives vinegar its strong, sour aroma and flavour. Other volatile compounds present in vinegars are mainly alcohols, acids, esters, aldehydes and ketones. The diversity of vinegars allows extensive applications in food.
  12. Aziz NS, Sofian-Seng NS, Mohd Razali NS, Lim SJ, Mustapha WA
    J Sci Food Agric, 2019 Apr;99(6):2665-2676.
    PMID: 30426501 DOI: 10.1002/jsfa.9481
    White pepper is the dried seeds obtained from pepper berries (Piper nigrum L.) after the removal of the pericarp. It has been widely used as seasoning and condiments in food preparation. Globally, white pepper fetches a higher price compared to black pepper due to its lighter colour, preferable milder flavour and pungency. Increasing global demand of the spice outpaced the supply as the conventional production method used is laborious, lengthy and also not very hygienic. The most common conventional method is water retting but can also include pit soil, chemical, boiling, steaming and mechanical methods. The introduction of a biotechnological approach has gained a lot of interest, as it is a more rapid, convenient and hygienic method of producing white pepper. This technique involves the application of microorganisms and/or enzymes. This review highlights both conventional and latest biotechnological processes of white pepper production. © 2018 Society of Chemical Industry.
  13. Ho CW, Lazim A, Fazry S, Hussain Zaki UKH, Massa S, Lim SJ
    J Sci Food Agric, 2020 Feb;100(3):1012-1021.
    PMID: 31646636 DOI: 10.1002/jsfa.10103
    BACKGROUND: Wines are produced via the alcoholic fermentation of suitable substrates, usually sugar (sugar cane, grapes) and carbohydrates (wheat, grain). However, conventional alcoholic fermentation is limited by the inhibition of yeast by ethanol produced, usually at approximately 13-14%. Aside from that, soursop fruit is a very nutritious fruit, although it is highly perishable, and thus produces a lot of wastage. Therefore, the present study aimed to produce fermented soursop juice (soursop wine), using combination of two starter cultures, namely mushroom (Pleurotus pulmonarius) and yeast (Saccharomyces cerevisiae), as well as to determine the effects of fermentation on the physicochemical and antioxidant activities of fermented soursop juice. Optimisation of four factors (pH, temperature, time and culture ratio) using response surface methodology were performed to maximise ethanol production.

    RESULTS: The optimised values for alcoholic fermentation were pH 4.99, 28.29 °C, 131 h and a 0.42 culture ratio (42:58, P. pulmonarius mycelia:S. cerevisiae) with a predicted ethanol concentration of 22.25%. Through a verification test, soursop wine with 22.29 ± 0.52% ethanol was produced. The antioxidant activities (1,1-diphenyl-2-picrylhydrazyl and ferric reducing antioxidant power) showed a significant (P 

  14. Fu MS, Lim SJ, Jalalonmuhali M, Ng KS, Lim SK, Ng KP
    J Transplant, 2019;2019:9153875.
    PMID: 31186948 DOI: 10.1155/2019/9153875
    Background: The role of protocol renal allograft biopsy in kidney transplantation is controversial due to the concern with procedural-related complications; however, its role is slowly evolving. Recent evidence suggests that protocol biopsy is useful in detecting subclinical renal pathology. Early recognition and treatment of renal pathologies can improve long-term outcomes of renal allografts.

    Methodology: A total of 362 renal allograft protocol biopsies were performed in adult recipients of kidney transplantation between 2012 and 2017. After excluding those with poor quality or those performed with a baseline serum creatinine level >200 umol/L, we analyzed 334 (92.3%) biopsies. Histology reports were reviewed and categorized into histoimmunological and nonimmunological changes. The immunological changes were subcategorized into the following: (1) no acute rejection (NR), (2) borderline changes (BC), and (3) subclinical rejection (SCR). Nonimmunological changes were subcategorized into the following: (1) chronicity including interstitial fibrosis/tubular atrophy (IFTA), chronic T-cell-mediated rejection (TCMR), unspecified chronic lesions, and arterionephrosclerosis, (2) de novo glomerulopathy/recurrence of primary disease (RP), and (3) other clinically unsuspected lesions (acute pyelonephritis, calcineurin inhibitors toxicity, postinfective glomerulonephritis, and BK virus nephropathy). Risk factors associated with SCR were assessed.

    Results: For the histoimmunological changes, 161 (48.2%) showed NR, 145 (43.4%) were BC, and 28 (8.4%) were SCR. These clinical events were more pronounced for the first 5 years; our data showed BC accounted for 59 (36.4%), 64 (54.2%), and 22 (40.7%) biopsies within <1 year, 1-5 years, and > 5 years, respectively (p = 0.011). Meanwhile, the incidence for SCR was 6 (3.7%) biopsies in <1 year, 18 (15.3%) in 1-5 years, and 4 (7.4%) in >5 years after transplantation (p=0.003). For the nonimmunological changes, chronicity, de novo glomerulopathy/RP, and other clinically unsuspected lesions were seen in 40 (12%), 10 (3%), and 12 (3.6%) biopsies, respectively. Living-related donor recipients were associated with decreased SCR (p=0.007).

    Conclusions: Despite having a stable renal function, our transplant recipients had a significant number of subclinical rejection on renal allograft biopsies.

  15. Lim SJ, Mohamad Ali MS, Sabri S, Muhd Noor ND, Salleh AB, Oslan SN
    Med Mycol, 2021 Dec 03;59(12):1127-1144.
    PMID: 34506621 DOI: 10.1093/mmy/myab053
    Candidiasis is a fungal infection caused by Candida spp. especially Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis. Although the medicinal therapeutic strategies have rapidly improved, the mortality rate as candidiasis has continuously increased. The secreted and membrane-bound virulence factors (VFs) are responsible for fungal invasion, damage and translocation through the host enterocytes besides the evasion from host immune system. VFs such as agglutinin-like sequences (Als), heat shock protein 70, phospholipases, secreted aspartyl proteinases (Sap), lipases, enolases and phytases are mostly hydrolases which degrade or interact with the enterocyte membrane components. Candidalysin, however, acts as a peptide toxin to induce necrotic cell lysis. To date, structural studies of the VFs remain underexplored, hindering their functional analyses. Among the VFs, only Sap and Als have their structures deposited in Protein Data Bank (PDB). Therefore, this review scrutinizes the mechanisms of these VFs by discussing the VF-deficient studies of several Candida spp. and their abilities to produce these VFs. Nonetheless, their latest reported sequential and structural analyses are discussed to impart a wider perception of the host-pathogen interactions and potential vaccine or antifungal drug targets. This review signifies that more VFs structural investigations and mining in the emerging Candida spp. are required to decipher their pathogenicity and virulence mechanisms compared to the prominent C. albicans.

    LAY SUMMARY: Candida virulence factors (VFs) including mainly enzymes and proteins play vital roles in breaching the human intestinal barrier and causing deadly invasive candidiasis. Limited VFs' structural studies hinder deeper comprehension of their mechanisms and thus the design of vaccines and antifungal drugs against fungal infections.

  16. Amran AI, Lim SJ, Muhd Noor ND, Salleh AB, Oslan SN
    Microb Pathog, 2023 Mar;176:106025.
    PMID: 36754101 DOI: 10.1016/j.micpath.2023.106025
    Meyerozyma guilliermondii is a rare opportunistic fungal pathogen that causes deadly invasive candidiasis in human. M. guilliermondii strain SO is a local yeast isolate that possesses huge industrial interests but also pathogenic towards zebrafish embryos. Enolases that bind to human extracellular matrix (ECM) proteins are among the fungal virulence factors. To understand its pathogenicity mechanism down to molecular level, especially in the rare M. guilliermondii, this study aimed to identify and characterize the potentially virulence-associated enolase in M. guilliermondii strain SO using bioinformatics approaches. Profile Hidden-Markov model was implemented to identify enolase-related sequences in the fungal proteome. Sequence analysis deciphered only one (MgEno4581) out of nine sequences exhibited potent virulence traits observed similarly in the pathogenic Candida albicans. MgEno4581 structure that was predicted via SWISS-MODEL using C. albicans enolase (CaEno1; PDB ID: 7vrd) as the homology modeling template portrayed a highly identical motif with CaEno1 that facilitates ECM proteins binding. Amino acid substitutions (D234K, K235A, Y238H, K239D, G243K, V248C and Y254F) in ECM-binding motif of Saccharomyces cerevisiae enolase (ScEno) compared to MgEno4581 and CaEno1 caused changes in motif's surface charges. Protein-protein docking indicated F253 in ScEno only interacted hydrophobically with human plasminogen (HPG). Hydrogen linkages were observed for both MgEno4581 and CaEno1, suggesting a stronger interaction with HPG in the hydrophilic host microenvironments. Thus, our in silico characterizations on MgEno4581 provided new perspectives on its potential roles in candidiasis (fungal-host interactions) caused by M. guilliermondii, especially M. guilliermondii strain SO on zebrafish embryos that mimic the immunocompromised individuals as previously evident.
  17. Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN
    J Biomol Struct Dyn, 2024 Jan 08.
    PMID: 38189364 DOI: 10.1080/07391102.2023.2300757
    Meyerozyma guilliermondii is a rare yeast pathogen contributing to the deadly invasive candidiasis. M. guilliermondii strain SO, as a promising protein expression host, showed 99% proteome similarity with the clinically isolated ATCC 6260 (type strain) in a recent comparative genomic analysis. However, their in vitro virulence features and in vivo pathogenicity were uncharacterized. This study aimed to characterize the in vitro and in vivo pathogenicity of M. guilliermondii strain SO and analyze its Als proteins (MgAls) via comprehensive bioinformatics approaches. M. guilliermondii strain SO showed lower and higher sensitivity towards β-mercaptoethanol and lithium, respectively than the avirulent S. cerevisiae but exhibited the same tolerance towards cell wall-perturbing Congo Red with C. albicans. With 7.5× higher biofilm mass, M. guilliermondii strain SO also demonstrated 75% higher mortality rate in the zebrafish embryos with a thicker biofilm layer on the chorion compared to the avirulent S. cerevisiae. Being one of the most important Candida adhesins, sequence and structural analyses of four statistically identified MgAls showed that MgAls1056 was predicted to exhibit the most conserved amyloid-forming regions, tandem repeat domain and peptide binding cavity (PBC) compared to C. albicans Als3. Favoured from the predicted largest ligand binding site and druggable pockets, it showed the highest affinity towards hepta-threonine. Non-PBC druggable pockets in the most potent virulence contributing MgAls1056 provide new insights into developing antifungal drugs targeting non-albicans Candida spp. Virtual screening of available synthetic or natural bioactive compounds and MgAls1056 deletion from the fungal genome should be further performed and validated experimentally.Communicated by Ramaswamy H. Sarma.
  18. Lim SJ, Wan Aida WM, Maskat MY, Latip J, Badri KH, Hassan O, et al.
    Food Chem, 2016 Oct 15;209:267-73.
    PMID: 27173562 DOI: 10.1016/j.foodchem.2016.04.058
    Fucoidan is a sulphated polysaccharide that consists mainly of fucose, normally found in brown seaweeds. In this study, fucoidan was extracted from Sargassum binderi (Fsar) from Malaysia and subsequently characterised. The chemical characteristics of Fsar were found to be different than those of commercial food grade fucoidan (Fysk) and those of previously studied fucoidans. NMR analysis proposed that the main structure of Fsar is →3)fuc-2-OSO3(-)(1→3)fuc(1→. The molecular weight (47.87kDa) and degree of sulphation (0.20) of Fsar were higher than those of Fysk, at 27.98kDa and 0.15, respectively. However, Fsar's polydispersity index (1.12) and fucose content (34.50%) were lower than those of Fysk, at 1.88 and 43.30%, respectively. Both Fsar and Fysk showed similar thermo-gravimetric properties with four mass losses, amorphous in nature and negative optical rotations. Results show that Fsar has fundamental characteristics of fucoidan with different structural conformation i.e. variation in glycosidic linkages and sulphate group orientation.
  19. Lim SJ, Wan Aida WM, Schiehser S, Rosenau T, Böhmdorfer S
    Food Chem, 2019 Jan 30;272:222-226.
    PMID: 30309536 DOI: 10.1016/j.foodchem.2018.08.034
    Fucoidan is a sulphated polysaccharide, made up mainly of l-fucose, which is found in brown seaweeds. Its chemical structure is diverse and depends on maturity, species and geographical location. The objective of this study was to elucidate the chemical structure of fucoidan from Cladosiphon okamuranus harvested in Japan. The fucoidan was subject to purification prior to monosaccharide profiling, sulphate content determination, and linkage analysis. Our results showed that Japanese Cladosiphon okamuranus fucoidan contained 70.13 ± 0.22 wt% fucose and 15.16 ± 1.17 wt% sulphate. Other minor monosaccharides found were d-xylose, d-galactose, d-mannose, d-glucose, d-arabinose, d-rhamnose and d-glucuronic acid. Linkage analysis revealed that fucopyranoside units along the backbone are linked, through α-1,3-glycosidic bonds, with fucose branching at C-2, and one sulphate group at C-4 per every three fucose units, i.e. the structure of fucoidan from Japanese Cladosiphon okamuranus is [→3)-α-fuc(1→]0.52[→3)-α-fuc-4-OSO3-(1→]0.33[→2)-α-fuc]0.14.
  20. Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN
    Med Mycol, 2024 Jan 09;62(1).
    PMID: 38061839 DOI: 10.1093/mmy/myad126
    Invasive candidiasis caused by the pathogenic Candida yeast species has resulted in elevating global mortality. The pathogenicity of Candida spp. is not only originated from its primary invasive yeast-to-hyphal transition; virulence factors (transcription factors, adhesins, invasins, and enzymes), biofilm, antifungal drug resistance, stress tolerance, and metabolic adaptation have also contributed to a greater clinical burden. However, the current research theme in fungal pathogenicity could hardly be delineated with the increasing research output. Therefore, our study analysed the research trends in Candida pathogenesis over the past 37 years via a bibliometric approach against the Scopus and Web of Science databases. Based on the 3993 unique documents retrieved, significant international collaborations among researchers were observed, especially between Germany (Bernhard Hube) and the UK (Julian Naglik), whose focuses are on Candida proteinases, adhesins, and candidalysin. The prominent researchers (Neils Gow, Alistair Brown, and Frank Odds) at the University of Exeter and the University of Aberdeen (second top performing affiliation) UK contribute significantly to the mechanisms of Candida adaptation, tolerance, and stress response. However, the science mapping of co-citation analysis performed herein could not identify a hub representative of subsequent work since the clusters were semi-redundant. The co-word analysis that was otherwise adopted, revealed three research clusters; the cluster-based thematic analyses indicated the severeness of Candida biofilm and antifungal resistance as well as the elevating trend on molecular mechanism elucidation for drug screening and repurposing. Importantly, the in vivo pathogen adaptation and interactions with hosts are crucial for potential vaccine development.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links