Displaying all 14 publications

Abstract:
Sort:
  1. Mackenzie JS
    J Neurovirol, 2005 Oct;11(5):434-40.
    PMID: 16287684
    The last decade of the 20th Century saw the introduction of an unprecedented number of encephalitic viruses emerge or spread in the Southeast Asian and Western Pacific regions (Mackenzie et al, 2001; Solomon, 2003a). Most of these viruses are zoonotic, either being arthropod-borne viruses or bat-borne viruses. Thus Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, has spread through the Indonesian archipelago to Papua New Guinea (PNG) and to the islands of the Torres Strait of northern Australia, to Pakistan, and to new areas in the Indian subcontinent; a strain of tick-borne encephalitis virus (TBEV) was described for the first time in Hokkaido, Japan; and a novel mosquito-borne alphavirus, Me Tri virus, was described from Vietnam. Three novel bat-borne viruses emerged in Australia and Malaysia; two, Hendra and Nipah viruses, represent the first examples of a new genus in the family Paramyxoviridae, the genus Henipaviruses, and the third, Australian bat lyssavirus (ABLV) is new lyssavirus closely related to classical rabies virus. These viruses will form the body of this brief review.
  2. Mackenzie JS, Williams DT
    Zoonoses Public Health, 2009 Aug;56(6-7):338-56.
    PMID: 19486319 DOI: 10.1111/j.1863-2378.2008.01208.x
    The genus Flaviviridae comprises about 70 members, of which about 30 are found in southern, south-eastern and eastern Asia and Australasia. These include major pathogens such as Japanese encephalitis (JE), West Nile (WN), Murray Valley encephalitis (MVE), tick-borne encephalitis, Kyasanur Forest disease virus, and the dengue viruses. Other members are known to be associated with mild febrile disease in humans, or with no known disease. In addition, novel flaviviruses continue to be discovered, as demonstrated recently by New Mapoon virus in Australia, Sitiawan virus in Malaysia, and ThCAr virus in Thailand. About 19 of these viruses are mosquito-borne, six are tick-borne, and four have no known vector and represent isolates from rodents or bats. Evidence from phylogenetic studies suggest that JE, MVE and Alfuy viruses probably emerged in the Malaya-Indonesian region from an African progenitor virus, possibly a virus related to Usutu virus. WN virus, however, is believed to have emerged in Africa, and then dispersed through avian migration. Evidence suggests that there are at least seven genetic lineages of WN virus, of which lineage 1b spread to Australasia as Kunjin virus, lineages 1a and 5 spread to India, and lineage 6 spread to Malaysia. Indeed, flaviviruses have a propensity to spread and emerge in new geographic areas, and they represent a potential source for new disease emergence. Many of the factors associated with disease emergence are present in the region, such as changes in land use and deforestation, increasing population movement, urbanization, and increasing trade. Furthermore, because of their ecology and dependence on climate, there is a strong likelihood that global warming may significantly increase the potential for disease emergence and/or spread.
  3. Mackenzie JS, Field HE
    PMID: 15119765
    Three newly recognized encephalitogenic zoonotic viruses spread from fruit bats of the genus Pteropus (order Chiroptera, suborder Megachiroptera) have been recognised over the past decade. These are: Hendra virus, formerly named equine morbillivirus, which was responsible for an outbreak of disease in horses and humans in Brisbane, Australia, in 1994; Australian bat lyssavirus, the cause of a severe acute encephalitis, in 1996; and Nipah virus, the cause of a major outbreak of encephalitis and pulmonary disease in domestic pigs and people in peninsula Malaysia in 1999. Hendra and Nipah viruses have been shown to be the first two members of a new genus, Henipavirus, in the family Paramyxoviridae, subfamily Paramyxovirinae, whereas Australian bat lyssavirus is closely related antigenically to classical rabies virus in the genus Lyssavirus, family Rhabdoviridae, although it can be distinguished on genetic grounds. Hendra and Nipah viruses have neurological and pneumonic tropisms. The first humans and equids with Hendra virus infections died from acute respiratory disease, whereas the second human patient died from an encephalitis. With Nipah virus, the predominant clinical syndrome in humans was encephalitic rather than respiratory, whereas in pigs, the infection was characterised by acute fever with respiratory involvement with or without neurological signs. Two human infections with Australian bat lyssavirus have been reported, the clinical signs of which were consistent with classical rabies infection and included a diffuse, non-suppurative encephalitis. Many important questions remain to be answered regarding modes of transmission, pathogenesis, and geographic range of these viruses.
  4. Field HE, Mackenzie JS, Daszak P
    PMID: 17848064
    Two related, novel, zoonotic paramyxoviruses have been described recently. Hendra virus was first reported in horses and thence humans in Australia in 1994; Nipah virus was first reported in pigs and thence humans in Malaysia in 1998. Human cases of Nipah virus infection, apparently unassociated with infection in livestock, have been reported in Bangladesh since 2001. Species of fruit bats (genus Pteropus) have been identified as natural hosts of both agents. Anthropogenic changes (habitat loss, hunting) that have impacted the population dynamics of Pteropus species across much of their range are hypothesised to have facilitated emergence. Current strategies for the management of henipaviruses are directed at minimising contact with the natural hosts, monitoring identified intermediate hosts, improving biosecurity on farms, and better disease recognition and diagnosis. Investigation of the emergence and ecology of henipaviruses warrants a broad, cross-disciplinary ecosystem health approach that recognises the critical linkages between human activity, ecological change, and livestock and human health.
  5. Mackenzie JS, Field HE, Guyatt KJ
    J Appl Microbiol, 2003;94 Suppl:59S-69S.
    PMID: 12675937
    Since 1994, a number of novel viruses have been described from bats in Australia and Malaysia, particularly from fruit bats belonging to the genus Pteropus (flying foxes), and it is probable that related viruses will be found in other countries across the geographical range of other members of the genus. These viruses include Hendra and Nipah viruses, members of a new genus, Henipaviruses, within the family Paramyxoviridae; Menangle and Tioman viruses, new members of the Rubulavirus genus within the Paramyxoviridae; and Australian bat lyssavirus (ABLV), a member of the Lyssavirus genus in the family Rhabdoviridae. All but Tioman virus are known to be associated with human and/or livestock diseases. The isolation, disease associations and biological properties of the viruses are described, and are used as the basis for developing management strategies for disease prevention or control. These strategies are directed largely at disease minimization through good farm management practices, reducing the potential for exposure to flying foxes, and better disease recognition and diagnosis, and for ABLV specifically, the use of rabies vaccine for pre- and post-exposure prophylaxis. Finally, an intriguing and long-term strategy is that of wildlife immunization through plant-derived vaccination.
  6. Hall RA, Scherret JH, Mackenzie JS
    Ann N Y Acad Sci, 2001 Dec;951:153-60.
    PMID: 11797773
    Kunjin (KUN) is a flavivirus in the Japanese encephalitis antigenic complex that was first isolated from Culex annulirostris mosquitoes captured in northern Australia in 1960. It is the etiological agent of a human disease characterized by febrile illness with rash or mild encephalitis and, occasionally, of a neurological disease in horses. KUN virus shares a similar epidemiology and ecology with the closely related Murray Valley encephalitis (MVE) virus, the major causative agent of arboviral encephalitis in Australia. Based on traditional antigenic methods, KUN was initially found to be similar to, but distinct from, reference strains of West Nile (WN) virus and designated as a new species. However, more recent phylogenic analyses have revealed that some strains of WN virus, including the isolates from New York, are more similar to KUN virus and form a separate lineage to other WN viruses. An unusual KUN isolate from Malaysia and the African virus Koutango appear to form additional lineages within the WN group of viruses. While these findings are in agreement with the Seventh Report of the International Committee for the Taxonomy of Viruses that designates KUN as a subtype of West Nile, they also suggest that the species should be further subdivided into additional subtypes.
  7. Poidinger M, Hall RA, Mackenzie JS
    Virology, 1996 Apr 15;218(2):417-21.
    PMID: 8610471
    The Japanese encephalitis (JE) serocomplex of flaviviruses comprises 10 members, 9 of which: Alfuy (ALF); Koutango (KOU); Kokobera (KOK); Kunjin (KUN); Murray Valley encephalitis (MVE); JE; Stratford (STR); Usutu (USU); and West Nile (WN) have been isolated from Africa, southern Europe, Middle East, Asia, and Australia. The tenth member, St. Louis encephalitis (SLE) virus, is confined to North, Central, and South America. For ALF, KOK, KOU, STR, and USU, no sequence data have as yet been reported, and little molecular phylogeny has been determined for this complex as a whole. Using a rapid, one-step RT-PCR and universal primers, we have amplified and sequenced a 450-600 base pair region of the virus genome encompassing the N terminus of the nonstructural protein NS5 and the 5' end of the 3' noncoding region, for several strains of all of these viruses, except USU and SLE viruses. These data, as well as published sequence data for other flaviviruses, were analyzed with the ClustalW and Phylip computer packages. The resultant phylogenetic data were consistent with some of the current flavivirus serological classification, showing a close relationship between ALF and MVE viruses and between KOK and STR viruses, but suggested that KOK and STR are distantly related to the other viruses and should perhaps be reclassified in their own serocomplex. The data also confirmed the close relationship between KUN and WN viruses and showed that an isolate of KUN virus from Sarawak may represent a "link" between these two virus species. In addition, the primary sequence data revealed a polymorphic region just downstream of the stop codon in the 3' end of the viral genomes.
  8. Adams SC, Broom AK, Sammels LM, Hartnett AC, Howard MJ, Coelen RJ, et al.
    Virology, 1995 Jan 10;206(1):49-56.
    PMID: 7530394
    Previous studies have found Kunjin (KUN) virus isolates from within Australia to be genetically homogenous and that the envelope protein of the type strain (MRM61C) was unglycosylated and lacked a potential glycosylation site. We investigated the extent of antigenic variation between KUN virus isolates from Australia and Sarawak using an immunoperoxidase assay and a panel of six monoclonal antibodies. The glycosylation status of the E protein of each virus was also determined by N glycosidase F (PNGase F) digestion and limited sequence analysis. The results showed that KUN viruses isolated within Australia oscillated between three antigenic types defined by two epitopes whose expression was influenced by passage history and host cell type. In contrast an isolate from Sarawak formed a stable antigenic type that was not influenced by passage history and was distinct from all Australian isolates. PNGase F digestions of KUN isolates indicated that 19 of the 33 viruses possessed a glycosylated E protein. Nucleotide sequence of the 5' third of the E gene of selected KUN isolates revealed that a single base change in PNGase F sensitive strains changed the tripeptide N-Y-F (amino acids 154-156 of the published sequence) to the potential glycosylation site N-Y-S. Further analysis revealed that passage history also had a significant influence on glycosylation.
  9. Scherret JH, Poidinger M, Mackenzie JS, Broom AK, Deubel V, Lipkin WI, et al.
    Emerg Infect Dis, 2001 Jul-Aug;7(4):697-705.
    PMID: 11585535
    Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four distinct groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses.
  10. Vasilakis N, Tesh RB, Popov VL, Widen SG, Wood TG, Forrester NL, et al.
    Viruses, 2019 05 23;11(5).
    PMID: 31126128 DOI: 10.3390/v11050471
    In recent years, it has become evident that a generational gap has developed in the community of arbovirus research. This apparent gap is due to the dis-investment of training for the next generation of arbovirologists, which threatens to derail the rich history of virus discovery, field epidemiology, and understanding of the richness of diversity that surrounds us. On the other hand, new technologies have resulted in an explosion of virus discovery that is constantly redefining the virosphere and the evolutionary relationships between viruses. This paradox presents new challenges that may have immediate and disastrous consequences for public health when yet to be discovered arboviruses emerge. In this review we endeavor to bridge this gap by providing a historical context for the work being conducted today and provide continuity between the generations. To this end, we will provide a narrative of the thrill of scientific discovery and excitement and the challenges lying ahead.
  11. Pyke AT, Williams DT, Nisbet DJ, van den Hurk AF, Taylor CT, Johansen CA, et al.
    Am J Trop Med Hyg, 2001 Dec;65(6):747-53.
    PMID: 11791969
    In mid-January 2000, the reappearance of Japanese encephalitis (JE) virus activity in the Australasian region was first demonstrated by the isolation of JE virus from 3 sentinel pigs on Badu Island in the Torres Strait. Further evidence of JE virus activity was revealed through the isolation of JE virus from Culex gelidus mosquitoes collected on Badu Island and the detection of specific JE virus neutralizing antibodies in 3 pigs from Saint Pauls community on Moa Island. Nucleotide sequencing and phylogenetic analyses of the premembrane and envelope genes were performed which showed that both the pig and mosquito JE virus isolates (TS00 and TS4152, respectively) clustered in genotype I, along with northern Thai, Cambodian, and Korean isolates. All previous Australasian JE virus isolates belong to genotype II, along with Malaysian and Indonesian isolates. Therefore, for the first time, the appearance and transmission of a second genotype of JE virus in the Australasian region has been demonstrated.
  12. Calisher CH, Carroll D, Colwell R, Corley RB, Daszak P, Drosten C, et al.
    Lancet, 2021 Jul 17;398(10296):209-211.
    PMID: 34237296 DOI: 10.1016/S0140-6736(21)01419-7
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links